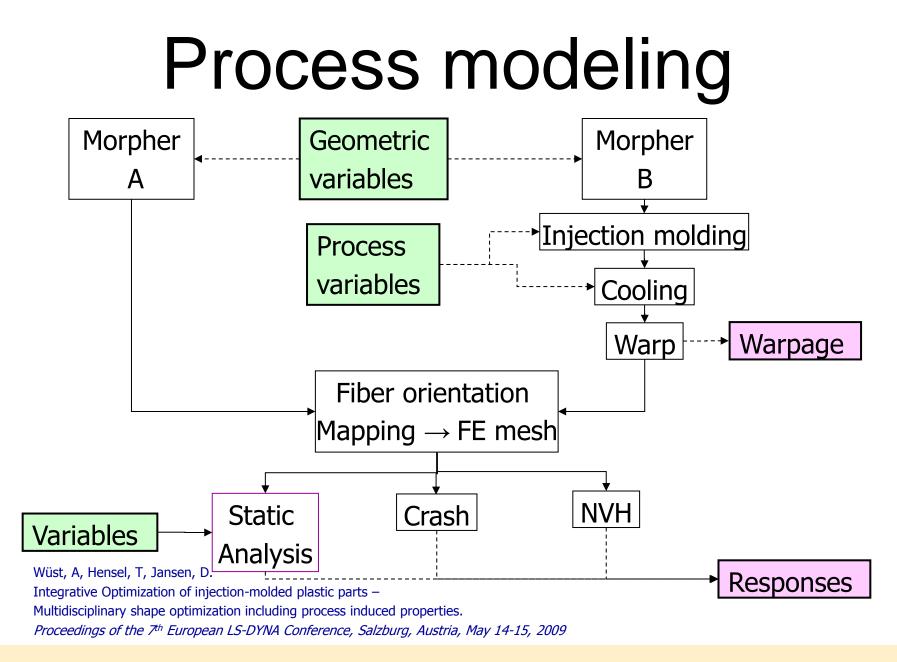
New Features in LS-OPT[®] V5


Katharina Witowski (DYNAmore) Nielen Stander (LSTC)

Overview

- Introduction: Goals
- Example: Manufacturing process

- Demonstration

- Other new features
- Outlook

Principal Goals

- Provide a capability for simulating and optimizing a <u>multidisciplinary process</u>.
- Handle job flows that <u>merge and</u> <u>branch</u>. Providing a tree structure is not sufficient.

Principal Goals

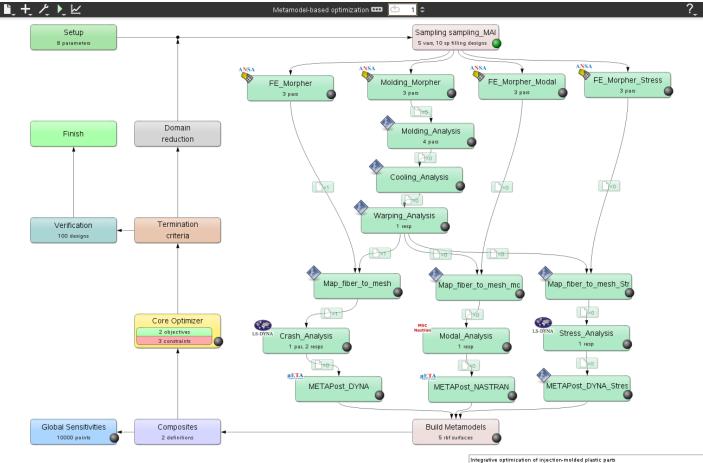
- Streamline job load balancing by allowing independent global resource definitions.
 - Removes limits on multi-case parallel simulations: improves throughput
 - Any number of resource types per stage
 - Applies to license limits, processor limits, memory limits, disk space, ...

Principal Goals

Increase <u>transparency</u>

- Show progress at all phases: simulation, optimization, …
- Modernize solver job progress
- Track design parameters and their sources
- Simplify <u>data flow</u>:
 - Support for file operations: copy, move, delete.

Goals (contd.)


- Simplify variable reduction and restart
 - <u>Seamless</u> interface for variable <u>screening</u> and optimization
 - Re-select variables and continue next iteration

<	Sta	age Ma	atrix	Sampling Matrix							
		00 10 10	PRS	CO N	C14	C20	C34	C69			
(G	•									
H	<	•									
F	٦										
	<_0			✓ 🗆							
1	N			✓ 🗆							
1	D_1			✓ 🗆							
1	0_2			✓ 🗆							
t	heta				\checkmark	\checkmark	✓	\checkmark			
1	ambda				\checkmark	\checkmark	\checkmark	\checkmark			
1	oeta				\checkmark	✓	✓	\checkmark			
	eta				\checkmark	\checkmark	\checkmark	✓			
V	Varning	: Varia	ble F	R is n	ot u	sec	l in	any s	ar		

Goals (contd.)

- Minimize keystrokes
 - "Replace" (save) rescinded
 - Economy of selections
 - Dual function buttons
 - Omission of redundant options improved
- View multiple windows
 - GUI, progress (stage-based) and processing at the same time

Flowchart of an injection molding example

/home/nielen/LSOPT/FUTURE/optOA/PROCESS_SIMULATION/BASF/DEMO/3/basf3.lsopt

Demonstration

• Large example

LS-OPT Example

• Set up an example from scratch

LS-OPT Setup

• Run a process

LS-OPT Run

Other new features in LS-OPT V5

 Support for string variables and constants. Both in LS-OPT and LS-DYNA

Parameter Setup	Stag	e Matrix	Sampling Matrix	Res	ources									
Туре		Name			Startin	g	Init. Ra	nge	Minimum	Maximum	Sampling Typ	e	Saddle Direct	De
String	~	Material	A			Y200	Values:	Y200, Y	250, Y275, Y300	, Y500,			Minimize 🔉	×
Discrete	~	Thicknes	ss			1.2	√alues:	1.1, 1.2	, 1.3, 1.4, 1.5, 1.6	5	 Discrete	-	Minimize 🔉	×
String	~	Material	В			R100	Values:	R100, F	125, R130, R160	,			Minimize 🔉	×
Add														

Other new features in LS-OPT V5

- Support Vector Regression as a metamodel
 - Precursor to multiple surrogates to automate metamodel choice

LS-OPT® Version 5:

- Excel stage type
 - Support Excel formulas as a response type
 - Typically used as a postprocessor
- Deactivation of variables
 - Already available in v5.0
 - Adding seamless deactivation between iterations

- Mathematical formulas of metamodel functions
 - Initially support polynomials and RBFNs
 - Can be used for e.g. Matlab plotting
- Global sensitivity analysis in sub-domain of design space
 - Simple subdomain bounds
 - Irregular subdomain bounds

- Response variables
 - Transfer of output variables (responses)
 from one stage as input variables to the next stage
 - Can generate new parameters in any stage of the process flow

- Multi-level optimization
 - Define an optimizer as a stage
 - Involves nesting of LS-OPT

- Collaborative optimization
 - De-activate selected cases in the MDO problem
 - Allows synthesis and decomposition of MDO setup
 - Import metamodel for selected case

Longer term developments

- Parallelization of LS-OPT
 - Especially useful for generating expensive metamodels, such as FFNN
- Enhanced Global Optimization (EGO)
 - Established, Kriging-based global optimizer based on the probability of finding an improved solution
 - Iterative in nature
 - Facilitates search for multiple local optima