

15th German LS-DYNA Forum

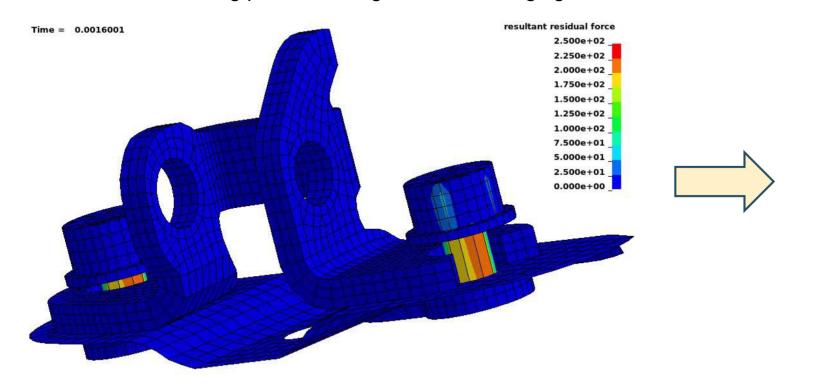
Modeling bolts in LS-DYNA[©] using explicit and implicit time integration

Nils Karajan, Alexander Gromer (DYNAmore Corp.),

Maik Schenke (DYNAmore GmbH);

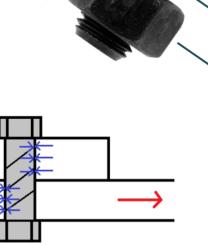
Thomas Borrvall (DYNAmore Nordic);

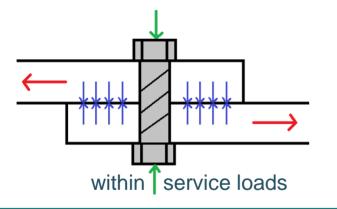
Kishore Pydimarry (Honda R&D Americas, Inc.)

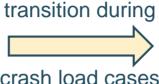

17 October 2018, Bamberg, Germany

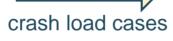
"Phenomena" encountered in implicit simulations

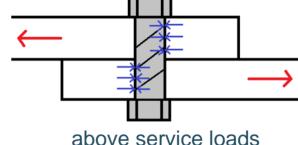
- Sure enough, other problems may arise
 - Full car model for explicit crash analysis was converted to implicit
 - Bolts caused one of the problems encountered
 - Residual forces during pre-tensioning are not converging


Let's do a paper
on bolt modeling
to investigate this further
and to share findings!


Friction Grip Bolts


Definitions and load bearing mechanism


- What is a bolted friction grip connection
 - Fastener is a bolt with a head, a threaded shank and a nut to apply tension
 - Washers may be included to distribute tensioning loads more evenly
 - Joins two or more sheets or blocks of material
 - Load carrying mechanism
 - Bolt pre-tensioning (clamping) allows to build up friction forces
 - Service loads are only carried by friction forces between plates
 - Above service loads, slipping occurs until hole bearing forces take over



'Onio length

[images: www.wikipedia.com]

head

shank

washer

thread

nut

- In-plane failure modes
 - Above service loads the law of static friction is violated.
 - Slipping motion between plates with dynamic friction resisting the motion
 - Hole bearing forces take over after bolt-to-plate contact is established
 - Failure will occur in the weakest part of the bolt or the plate

& W

Bolt fails in shear

bolted connection - bolt shear

Plate fails in shear

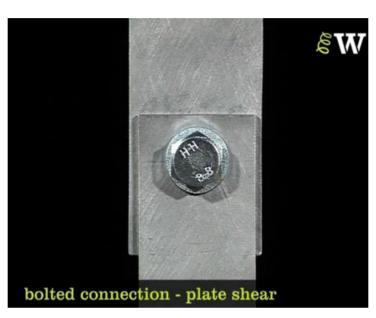
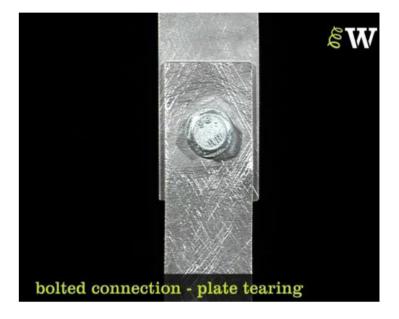
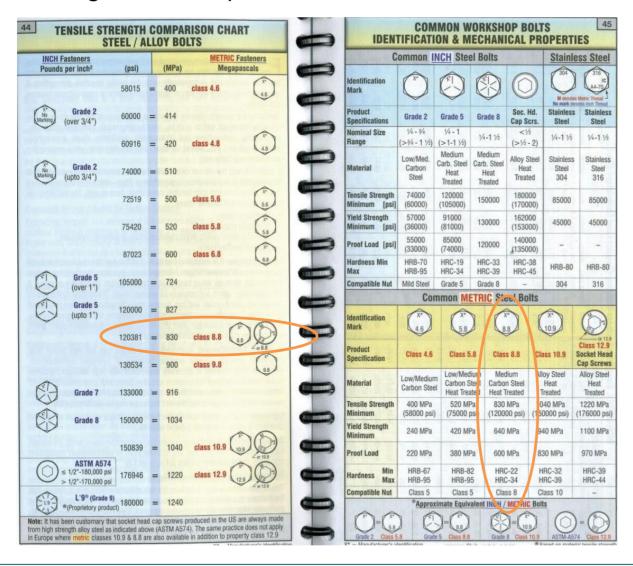
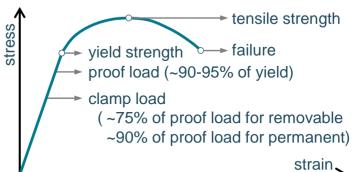



Plate tears out



■ Here: No characterization of the failure itself

[videos: www.youtube.com/user/ExpeditionWorkshed]



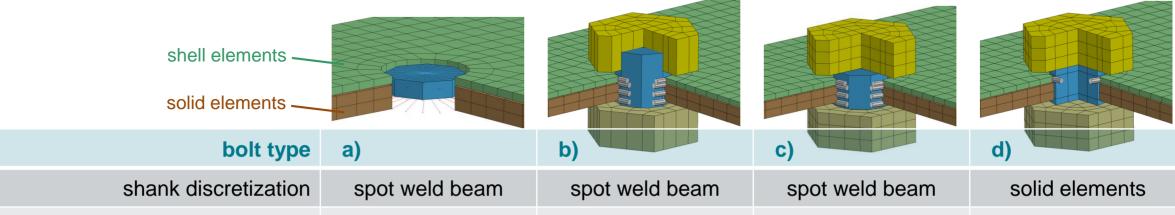
Bolt grades and pre-tension forces

- Pre-tension force based on yield stress
 - Application by tightening torque

Important Note: The tables below lists the maximum permissible tightening torques and the resulting maximum pre-load for standard hex head bolts & socket head cap screws based on 90% utilization of the bolt's yield strength. They do not include any safety factor and should be used with caution because the coefficient of friction μ is subject to many application variables & as a result, an entirely different pre-load figure would result (also refer page 39 & 78). Coefficient of friction: $\mu = 0.14$ is for standard zinc plated bolts (dry) $\mu = 0.10$ is for standard black bolts (lubricated)

TIGHTENING TORQUE FOR METRIC BOLTS

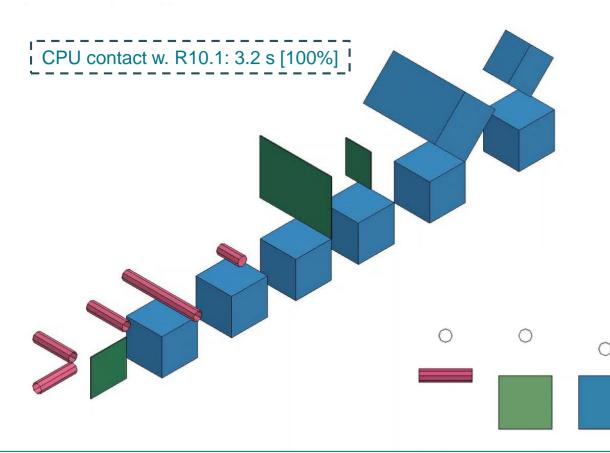
Bolt	Thread	*when µ =		*when µ =	
Diameter x Pitch	Stress Area mm²	Tightening Torque	Pre-load	Tightening Torque	Pre-load
M5 x 0.8	14.2	5.2	7.4	6.5	7.0
M6 x 1	20.1	9.0	10.4	11.3	9.9
MR - 1.05	30.0	21.0	19.1	21.5	10.1
M10 x 1.5	58.0	43	30.3	54	28.8
M12 x 1.19	04.0	79	44 1	02	71.9
M14 x 2	115	117	60.6	148	57.5
8840 0	457	100	00.0	000	70.0


[images: www.FastenerBlackBook.com]

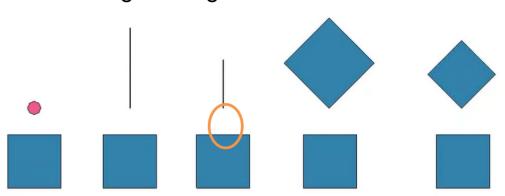
DYNA

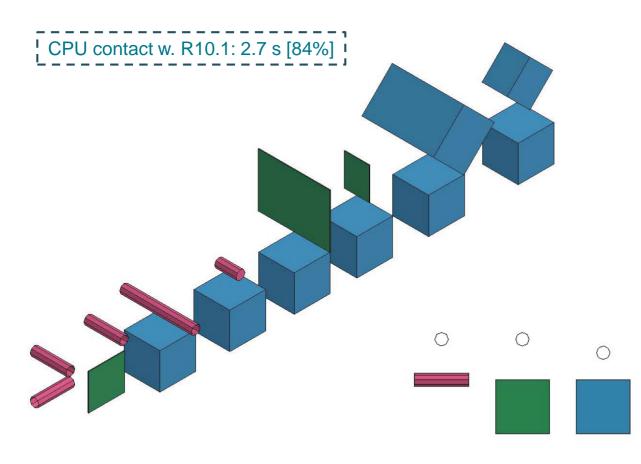
Modeling Techniques for Pre-Tensioned Bolts in LS-DYNA

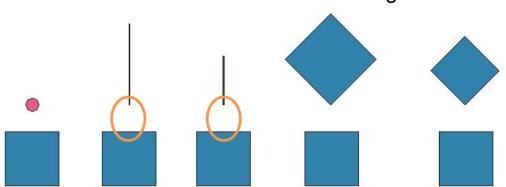
Overview of the "bolt types" used in this presentation

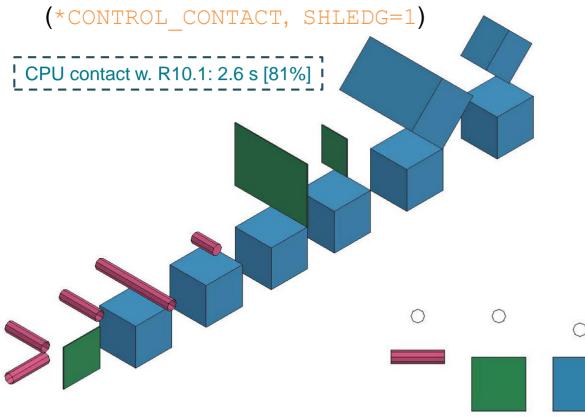


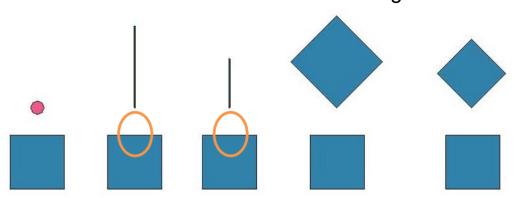
boil type	a)	D)	C)	u)
shank discretization	spot weld beam	spot weld beam	spot weld beam	solid elements
shank material	*MAT_SPOTWELD	*MAT_SPOTWELD	*MAT_SPOTWELD	any (*MAT_024)
pre-stress/tension application	*INITIAL_AXIAL_ FORCE_BEAM	*INITIAL_AXIAL_ FORCE_BEAM	*INITIAL_AXIAL_ FORCE_BEAM	*INITIAL_STRESS _SECTION
head / nut discretization	nodal rigid body or beam spider	shell elements	solid elements	solid elements
contact beam on shank	no	yes & no (depend	s on contact card)	not necessary
contact beams @ shell plate	no	yes & no (depend	s on contact card)	yes & no (contact)
contact beams @ solid plate	no	yes & no (depend	s on contact card)	not necessary



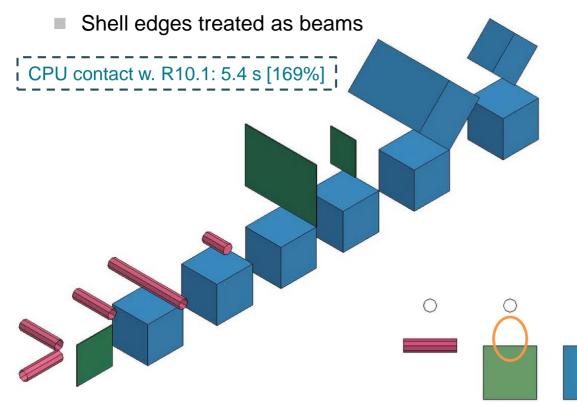

- *CONTACT_AUTOMATIC_SINGLE_SURFACE
 - "Classic" node to segment penetration check


- Captured contact situations
 - Nodes not allowed to penetrate segments
 - Segment extension on nodes of shell edge
- Missed contact situations
 - Beam to beam
 - Beam to shell edge
 - Beam to segment of shell and solid
 - Shell edge to segment of shell and solid
 - Solid edge to segment of shell and solid

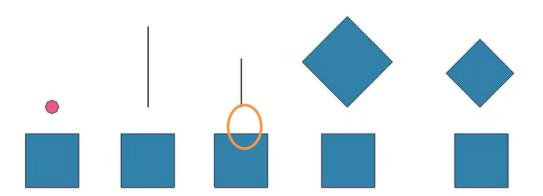

- *CONTACT_AUTOMATIC_SINGLE_SURFACE
 - Now SOFT=2: segment-based penetration check


- Captured contact situations
 - Segments not allowed to penetrate segments
 - Shell edge to segment of shell and solid
 - Solid edge to segment of shell and solid
- Missed contact situations
 - Beam to beam
 - Beam to shell edge
 - Beam to segment of shell and solid
 - Also when beam nodes are "on segment"

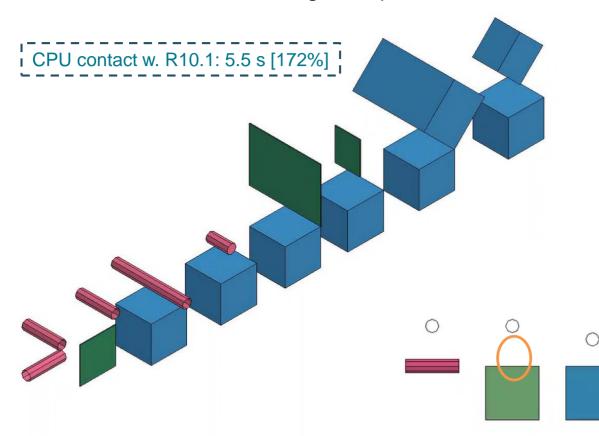
- *CONTACT_AUTOMATIC_SINGLE_SURFACE
 - Now SOFT=2 : segment-based penetration check
 - No segment extension on shell edge



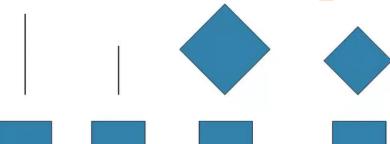
- Captured contact situations
 - Segments not allowed to penetrate segments
 - Shell edge to segment of shell and solid
 - Solid edge to segment of shell and solid
- Missed contact situations
 - Beam to beam
 - Beam to shell edge
 - Beam to segment of shell and solid
 - Also when beam nodes are "on segment"



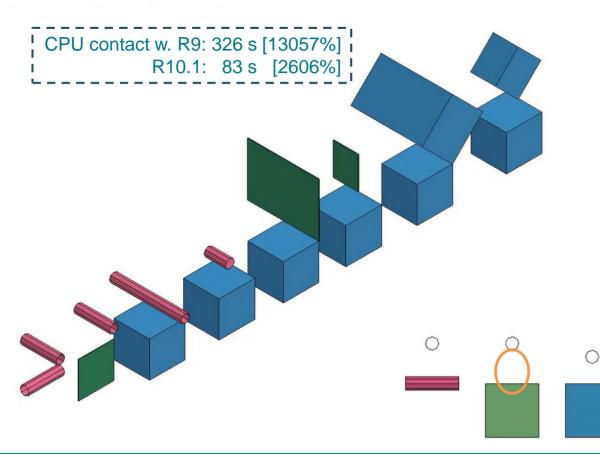
- *CONTACT_AUTOMATIC_GENERAL
 - "Classic" node to segment penetration check
 - Enhanced by beam to beam penetration check



- Captured contact situations
 - Nodes not allowed to penetrate segments
 - Beam to beam
 - Beam to shell edge (segment extension!)
- Missed contact situations
 - Beam to segment of solid (but shell works)
 - Shell edge to segment of solid (but shell works)
 - Solid edge to segment of solid

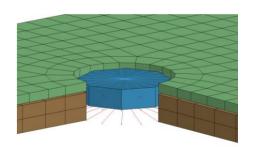


- *CONTACT_AUTOMATIC_GENERAL_EDGEONLY
 - Only beam to beam penetration check
 - Switched off node to segment penetration check

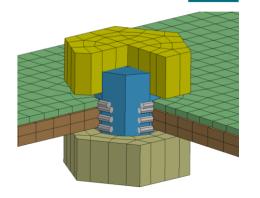


- Captured contact situations
 - Beam to beam
 - Beam to shell edge (segment extension!)
- Missed contact situations
 - Nodes not allowed to penetrate segments
 - Beam to segment of shell and solid
 - Shell edge to segments of shells and solids
 - Solid edge to segments of shells and solids
 - No spot weld beam (eltyp=9) → use MPP

- *..._AUTOMATIC_SINGLE_SURFACE_MORTAR
 - Segment-based penetration check

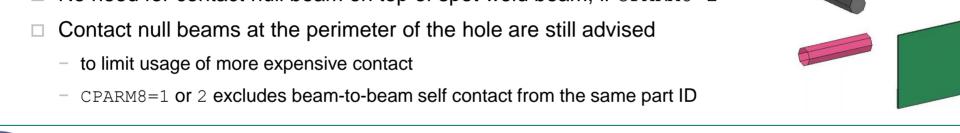

- Captured contact situations
 - Segments not allowed to penetrate segments
 - Shell edge to segment of shell and solid
 - Solid edge to segment of shell and solid
 - Beam to beam
 - Beam to shell edge (NO segment extension!)
 - Beam to segment of shell and solid
- Missed contact situations
 - None (since recently also spot weld beams)

Bolt type a)

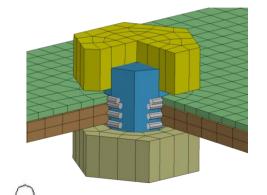

- General remarks
 - Simplest way to add pre-tension to a friction grip bolt connection
 - Spot weld beam of shaft is connected via rigid or deformable beam spider
 - No additional contact needed besides *CONTACT_AUTOMATIC_SINGLE_SURFACE
- Explicit vs. implicit time integration
 - The MORTAR option is typically advised to use in implicit simulations
- Merits and drawbacks
 - Usually only good within the service load regime
 - Above service loads, slipping between sheets and head/nut is missed
 - Rigid beam spiders influence stress wave propagation
 - For connection of three sheets with slipping motion, refer to bolt type b)
 - Failure probably not well captured

Bolt type b)

- General remarks
 - More detailed method to model friction grip bolt connections
 - Possibility to predict slipping beyond service load and even failure
 - Sheets Head, nut and washers in *CONTACT AUTOMATIC SINGLE SURFACE
 - If hole bearing behavior is of interest a special contact is needed
 - *CONTACT AUTOMATIC GENERAL
 - □ Needs contact null beam with *MAT NULL on spot weld beam
 - Needs contact null beams at the perimeter of the hole
 - to limit the usage of this more expensive contact definition
 - exhibits beam-to-beam self contact of contact null beams when in same part ID
 - *CONTACT_AUTOMATIC_GENERAL_MPP
 - □ No need for contact null beam on top of spot weld beam, if CPARM8=2



shell eltyp=16

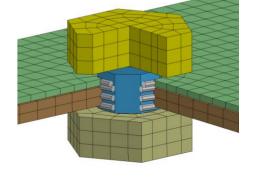


Bolt type b) – cont'd

- Explicit vs. implicit time integration
 - The MORTAR option is typically advised to use in implicit simulations
 - In theory, no contact null beams are needed
 - In practice, contact null beams are still modeled
 - □ Mortar contact stiffness is smaller on shell edges
 - ☐ Mortar contact has no segment extension of shells
 - □ Without null beams, the bolt hole is bigger and slip may be greater
 - Keep contact null beams to keep comparability to explicit simulations

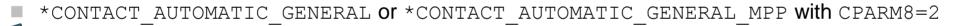
Merits and drawbacks

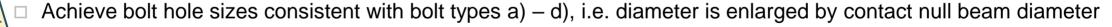
- Usually also good beyond the service load regime during slip
- Bolt shear failure might be difficult to predict with a single spot weld beam element
- Flat shell element topologies like the head and the nut are not able to connect the shank with torsion
 - Drilling rotation constrained automatically switched on in implicit to avoid unconstrained degrees of freedom
- Shells of the head and the nut have a segment extension which might bother in detailed models



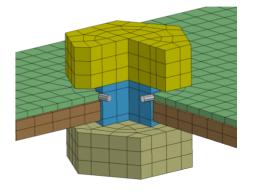
Bolt type c)

- General remarks
 - Shank and bolt hole modeled as in type b)
 - Same special contact treatment to capture hole bearing
 - Head and nut modeled with solids instead of shells elements
 - Solids lack rotational degrees of freedom and there is no drilling rotation constraint to connect spot weld beam
 - Head and nut modeled as rigid bodies
 - □ LS-DYNA takes care of fixing rotations in explicit and implicit simulations
 - Head and nut modeled as deformable bodies.
 - ☐ Beam spider should be used to connect spot weld beam to the solid elements
- Explicit vs. implicit time integration
 - As in type b), the _MORTAR option is advised in implicit simulations together with contact beams
 - Use beam spider to connect spot weld beam with deformable head & nut to avoid singular stiffness matrix
- Merits and drawbacks
 - Similar as for type b) → might go the extra mile and model type d)



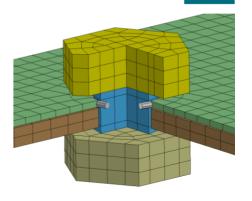

Bolt type d)

used in


commonly

- General remarks
 - Shank, head and nut are meshed with solid elements
 - Typical are hexahedron elements only or in combination with some pentahedrons
 - Tetrahedrons should be always avoided
 - Sharing nodes or tied contact between head or nut and shank
 - Three common ways to define contact between shaft and bolt hole

- □ Contact null beams at hole perimeter (not necessary) can be included when converting from bolt types a) d)
- *CONTACT AUTOMATIC SINGLE SURFACE with SOFT=2 (segment based contact)
 - □ Achieve bolt holes with segment extension at shell edge
 - \Box Usually meshed bolt hole size consistent with bolt types a) d), i.e. diameter is enlarged by shell thickness
- *CONTACT_AUTOMATIC_SINGLE_SURFACE with SOFT=2 and SHLEDG=1 in *CONTROL_CONTACT
 - ☐ Mesh has bolt holes with the diameter they actually have, i.e. no segment extension at shell edge (convenient!)
 - ☐ Bolt hole size directly compatible to the _MORTAR contact option when using implicit LS-DYNA

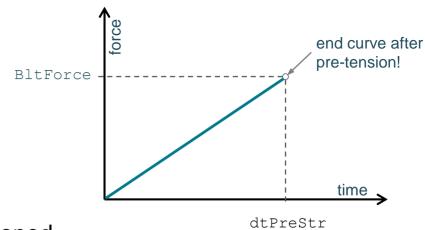


Bolt type d)

- Explicit vs. implicit time integration
 - As in type b), the MORTAR option is advised in implicit simulations
 - Contact null beams can be included.
 - Keep compatibility to explicit models which have them included
 - Works also without contact null beams
 - Keep compatibility to explicit model with SOFT=2 and SHLEDG=1

Merits and drawbacks

- Bolt failure can be captured well with fine enough mesh
 - Almost all material models can be used with MAT ADD EROSION
- Bolt pre-tension is applied as stress versus an applied force in case of the spot weld beam
 - To compare with types a)-c), make sure to convert with the right cross section area

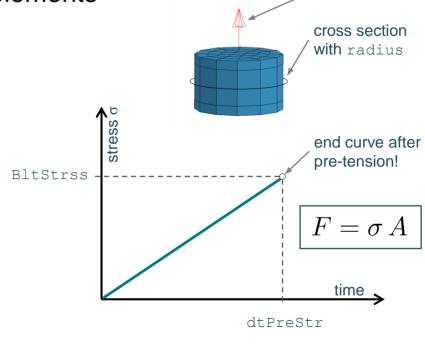


Initializing the Pre-Tension in the Bolt

Shanks modeled with spot weld beam elements

Initialization of a normal force as pre-tension in the spot weld beam

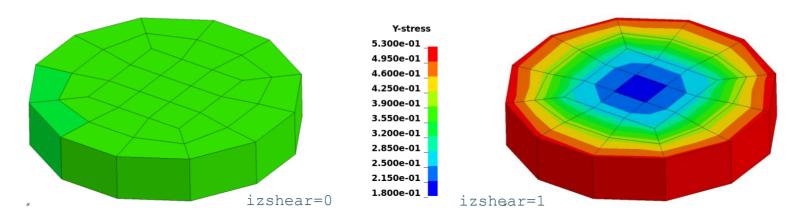
*INI	TIAL_AXIAI	FORCE_B	EAM					
\$#	bsid	lcid	scale	kbend				
	100	100						
*DEF	'INE_CURVE							
\$#	lcid	sidr	sfa	sfo	offa	offo	dattyp	lcint
	100	&	dtPreStr &F	BltForce				
\$#		a1		01				
		0.0		0.0				
		1.0		1.0				


- bsid: beam set ID containing the spot weld beams to be pre-tensioned
- dtPreStr: parameter defining the initialization time of the pre-tension
- BltForce: parameter defining the pre-tension force
- Bending stiffness of bolt during initialization
 - kbend=0: **no bending stiffness**
 - kbend=1: beam has bending stiffness (starting with R10)

Shanks modeled with solid elements

Initialization of a normal stress in a cross section of the solid elements

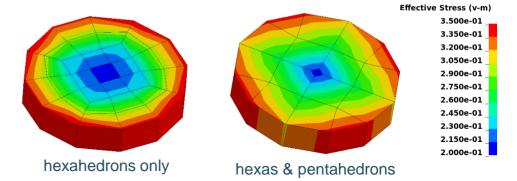
	TIAL_STRE	_				h		
\$#		csid		psid	VIA			
	100	100	100	100		2		
*DEF	FINE_CURVE							
\$#	lcid	sidr	sfa	sfo	offa	offo	dattyp	lcint
	100	&d	tPreStr &B	ltStrss				
\$#		a1		01				
		0.0		0.0				
		1.0		1.0				
*DAI	ABASE_CRO	SS_SECTION	_PLANE_ID					
\$#	csid							title
	100 Cr	oss Sectio	n Bolt					
\$#	psid	xct	yct	zct	xch	ych	zch	radius
	100		-1.6			0.6		5.5
\$#	xhev	yhev	zhev	lenl	lenm	id	itype	


- psid: part set ID containing the solid elements to be pre-stressed
- [x,y,z] ct [x,y,z] ch: head and tail coordinate of normal vector of the cross section
- BltForce: radius of a circular cross section (provide reasonable value!)
- izshear: flag to activate shear stiffness during pre-stressing phase (was revised for R11)

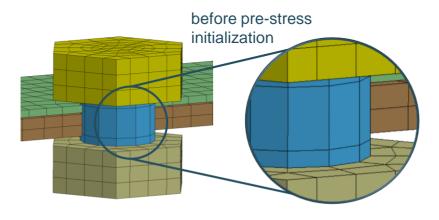
normal vector

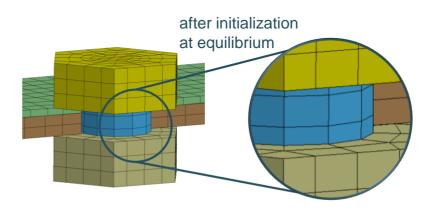
Shanks modeled with solid elements – cont'd

- izshear: Allow shear stresses to develop during the pre-stressing phase
 - Yields more realistic distribution of the normal stresses
 - Normal stress distribution in the bolt at equilibrium using LS-DYNA implicit (R11)
 - izshear=0: yields homogeneous normal stress of 0.38 GPa
 - izshear=2: yields inhomogeneous normal stresses averaging 0.38 GPa over the cross section



- Revised for implicit in current developer versions (SVN>123041, including R11 branch)
 - For explicit analysis this will be available as izshear=2 as of R11 (due to backward compatibility reasons)
 - For implicit izshear=1 and izshear=2 are synonymous

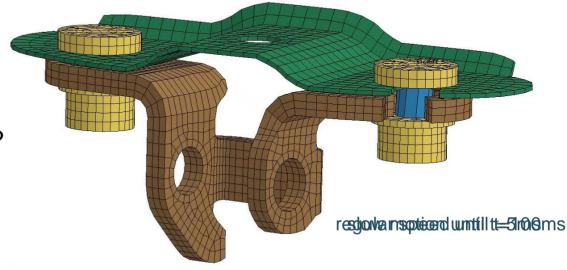



Shanks modeled with solid elements - cont'd

- Avoid pentahedron elements in the shank
 - Normal stress distribution might be disturbed
 - Cause convergence problems during implicit simulations with some LS-DYNA releases (R9.2, R10)

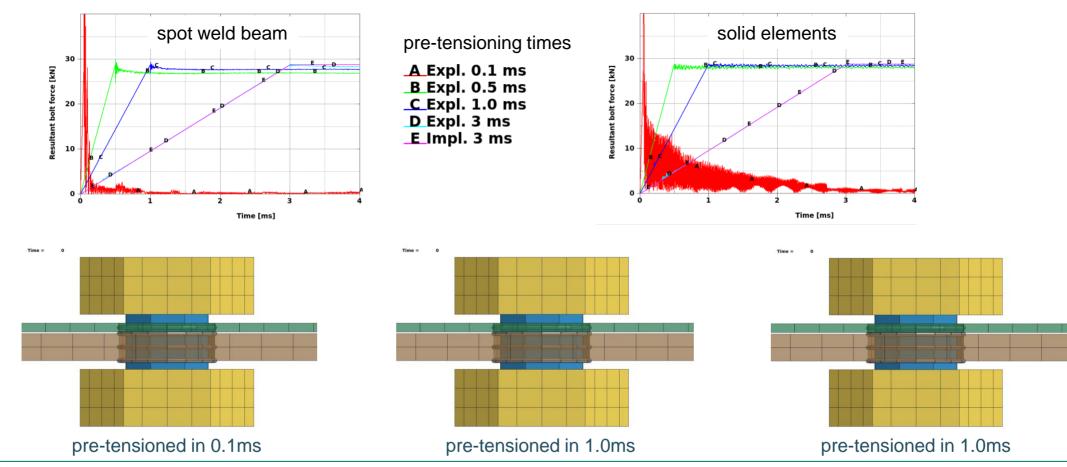
- Allow for large enough elements to account for initial contraction
 - Elements with a pre-stress application "shrink" until equilibrium is reached
 - Head and nut need to travel far enough to be in contact with the sheets
 - Best to account for this such that the deformed configuration leads to a nice mesh





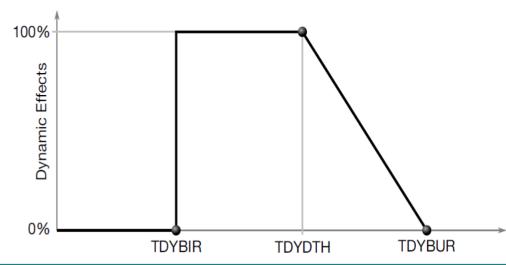
General rules of thumb during pre-stress initialization

- Initial gap size
 - The smaller the gap the better!
 - Head and nut impact causes
 - Stress waves in the rest of the model (noise)
 - Convergence problems in implicit simulations
- Skew bolt shaft
 - Can cause an initial slip of the connection
 - Bolt may end up tilted causing
 - Stress concentration
 - Reduction in clamping force
- Forgot to define the right friction in the contact card?
 - Here: static friction of 0.1



General rules of thumb during pre-stress initialization

- Pre-stress application time
 - If the tension initialization ends before equilibrium is reached, the desired bolt force is not reached



Bolts Modeled with LS-DYNA / Implicit

Perform static or dynamic simulation?

- Start with dynamic simulation to avoid matrix singularities
 - Initially the bolt is loose which leads to unconstrained rigid body modes (bad for convergence)
 - Damped Newmark scheme will help convergence greatly calms the system during pre-tensioning
- Switch to static simulation after bolt is pre-tensioned
 - Over time, dynamic effects can be removed to fully calm the system
- Dynamic parts may be switched back on, if needed (i.e. slipping with loads beyond service loads)

*COI	NTROL_IMPI	LICIT_DYN	AMICS					
\$#	imass	gamma	beta	tdybir	tdydth	tdybur	irate	alpha
	-42	0.60	0.38000					
*DE	FINE_CURVE	E						
\$#	lcid	sidr	sfa	sfo	offa	offo	dattyp	lcint
	42							
\$#		a1		01				
		0.0		1.0	ן	ale are a section		
	& 0	dtPreStr		1.0	Ţ (dynamic		
	2.0*&0	dtPreStr		0.0	- 1	transition t	to static	
(&tLoad		1.0)			dynamics	back on

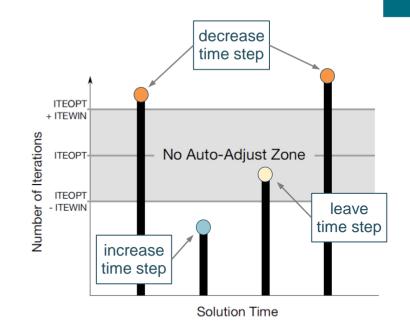
General implicit settings

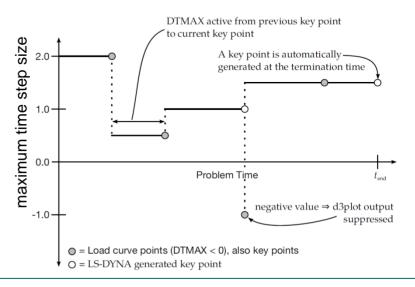
General nonlinear solver settings

*CO	NTROL_IMP	LICIT_GENE	RAL					
\$#	imflag	dt0	imform	nsbs	igs	cnstn	form	zero_v
	1	&dt0						
*CO	NTROL_IMP	LICIT_SOLU	TION					
\$#	nsolvr	ilimit	maxref	dctol	ectol	rctol	lstol	abstol
	12	6	12					1.0e-20
\$#	dnorm	diverg	istif	nlprint	nlnorm	d3itctl	cpchk	
	1			3	4	1		
\$#	arcctl	arcdir	arclen	arcmth	arcdmp	arcpsi	arcalf	arctim
\$#	lsmtd	lsdir	irad	srad	awgt	sred		

- imflag: implicit/explicit analysis type
- dt0: initial time step size
- abstol: remove absolute tolerance
- d3itctl: output convergence to d3iter

- nsolvr: recommended nonlinear solver
- ilimit: Iteration limit between automatic stiffness reformations (problem dependent)
- maxref: Stiffness reformation limit per time step (problem dependent)
- dnorm: displacement norm increment for convergence as a function of displacement over current step
- nlnorm=4: consider sum of translational and rotational degrees of freedom

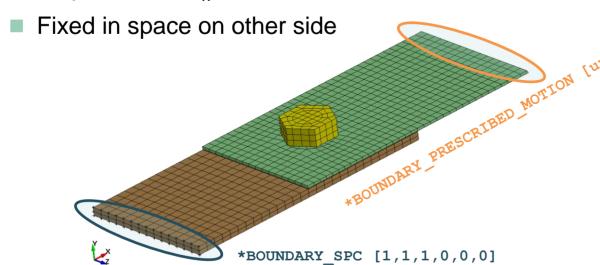


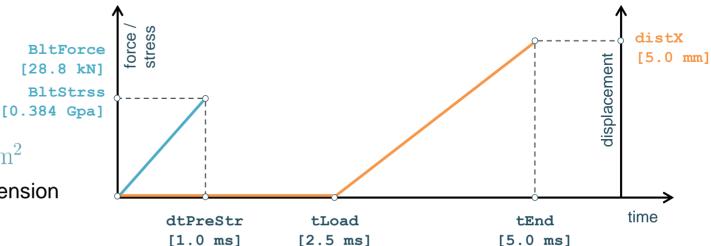

Auto time step size and key points

Automatic time step size control

*COI	NTROL_IMP	LICIT_AUTO)					
\$#	iauto	iteopt	itewin	dtmin	dtmax	dtexp	kfail	kcycle
	1	40	10		-24			
*DEI	FINE_CURV	E						
\$#	lcid	sidr	sfa	sfo	offa	offo	dattyp	lcint
	24							
\$#		a1		01				
	&dtP	reStrss		&dtMax				
		&tLoad		&dtMax				

- iauto: flag to switch on/off automatic time step control
- itopt: optimal number of iterations
- itwin: optimal iteration bandwidth
- dtmin: lower time step boundary (default dt0/1000)
- dtmax: upper time step boundary (<0 it's a curve ID with key points)</p>
- Definition of key points
 - Important points in time that need to be reached exactly

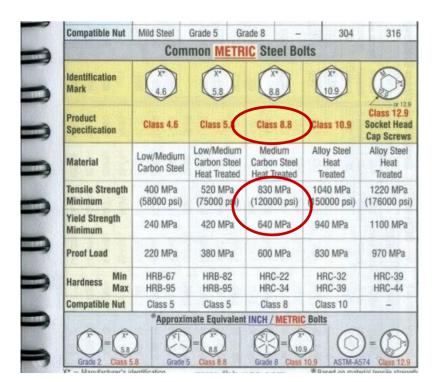


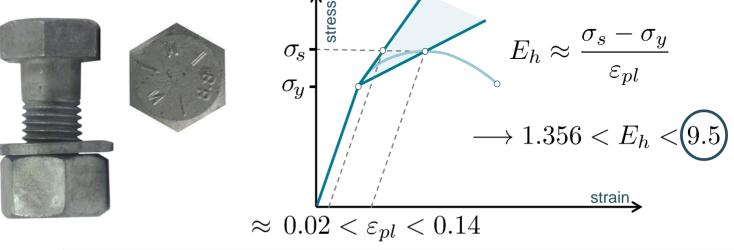


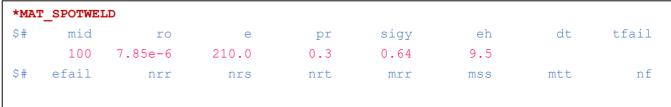
Presented Example for Bolt Types a) to d)

Boundary conditions

- Boundary conditions
 - Bolt pre-tension
 - Spot weld beam: $F = \sigma A = 28.8 \,\mathrm{kN}$
 - Solids: $\sigma = 0.3841 \, \text{GPa}$ $A = 74.9859 \, \text{mm}^2$
 - Here: solid pre-stress yields equivalent pre-tension
 - Displacement u_x on one side


Tightening Torque for <u>Class 4.6</u> Bolts (<u>METRIC COARSE</u>)								
Bolt	Thread	*when µ =		*when µ = 0.14				
Diameter x Pitch	Stress Area mm ²	Tightening Torque	Pre-load kN	Tightening Torque	Pre-load kN			
M5 x 0.8	14.2	5.2	7.4	6.5	7.0			
M6 x 1	20.1	9.0	10.4	11.3	9.9			
M8 x 1.25	36.6	21.6	19.1	27.3	18.1			
M10 x 1.5	58.0	43	30.3	54	28.8			
M12 x 1.75	84.3	73	44.1	93	41.9			
M14 x 2	115	117	60.6	148	57.5			
1140 0	457	100	00.0	000	70.0			




Material cards for spot weld beams and solids

Bolt grades with yield and tensile strength

Material cards in [kg / mm / ms / kN / Gpa]


```
*MAT_PLASTIC_KINEMATIC

$# mid ro e pr sigy etan beta

100 7.85e-6 210.0 0.3 0.64 9.5

$# src srp fs vp

1.0
```

[images: www.FastenerBlackBook.com]

How to start the examples

Parameters to be altered by the user

```
$ Run file as is. It was tested with LS-DYNA R9.2 with double precision.
$# Units: kg / mm / ms / kN / GPa / kN-mm
*KFYWORD
*PARAMETER
               val1
                                  val2
                                                             prmr4
                                                                        val4
    prmr1
                       prmr2
                                          prmr3
                                                     val3
$--- Simulation time
                                  set termination time
     tEnd
$--- Pre-force in beams / Pre-stress in solids (cross sect 74.9859 mm^2)
R bltForce
               28.8
                                  define pre-tension
R bltStrss
             0.3841
    Loading of the connection
    distX
                5.0
                                  define displacement
    distY
                0.0
 _____
$ INCLUDE cards
*INCLUDE
control explicit.k
                                  select if explicit or implicit
$control implicit.k
*INCLUDE
$bolted connection a.k
$bolted connection b.k
                                  select bolt model
bolted connection c.k
$bolted connection d.k
```

Parameters that are automatically computed

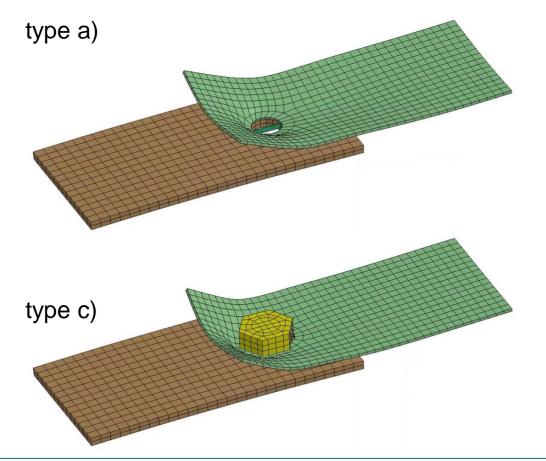
```
*PARAMETER EXPRESSION
     prmr1
$--- Plot intervals
    dtPlot
                 TEnd/50.0
   dtAscii
                 TEnd/1000.0
$--- Load application times
R dtPreStr
                 TEnd/5.0
     tl oad
                 TFnd/2.0
     Implicit time integration
                 dtPreStr/20.
                 dtPreStr/30.
     dtMin
     dtMax
                 dtPreStr/10.
                 dtPreStr*2./3.
    tDvDth
    tDyBur
                 dtPreStr
    tDyBir
                 tLoad
     Infinity time
                 tEnd*1.01
    tInfty
```

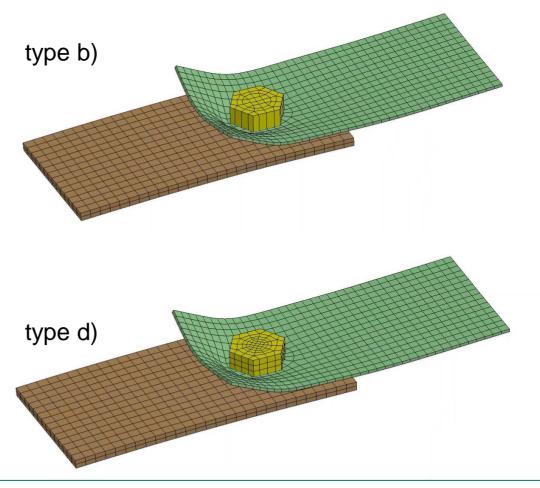
expression1

automatic plot intervals

load application based on termination time

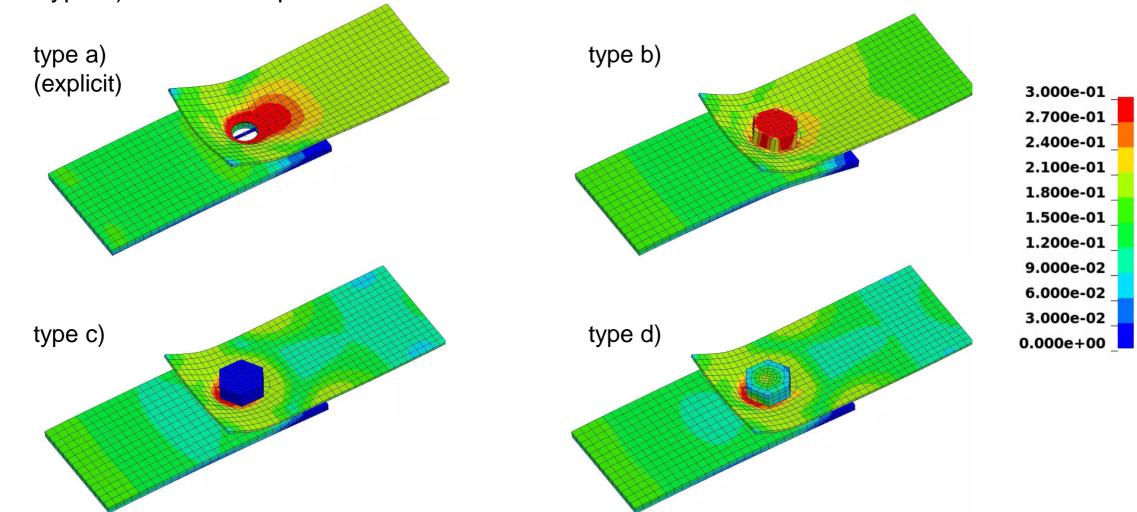
implicit parameters based on termination time

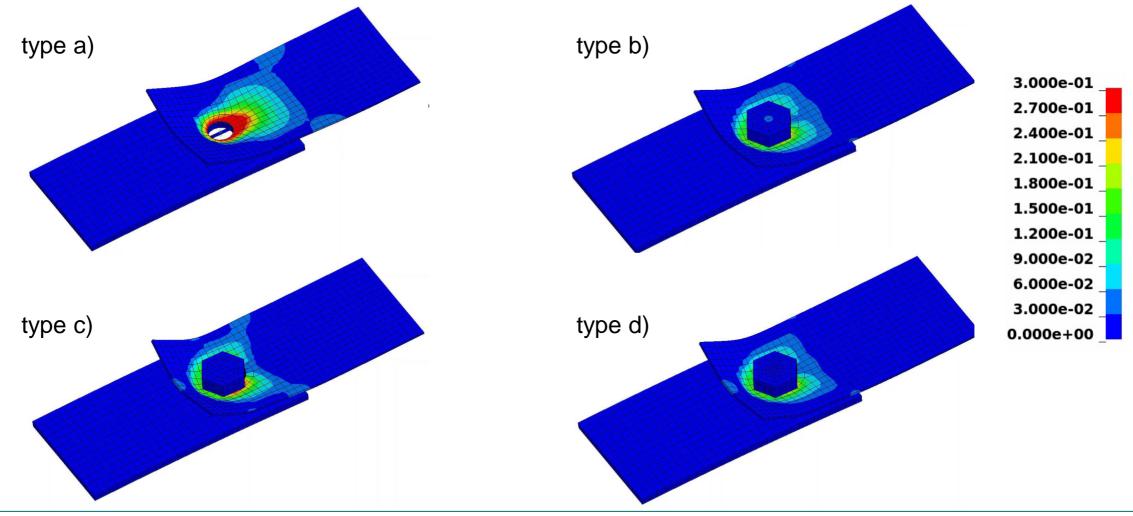

numerical infinity



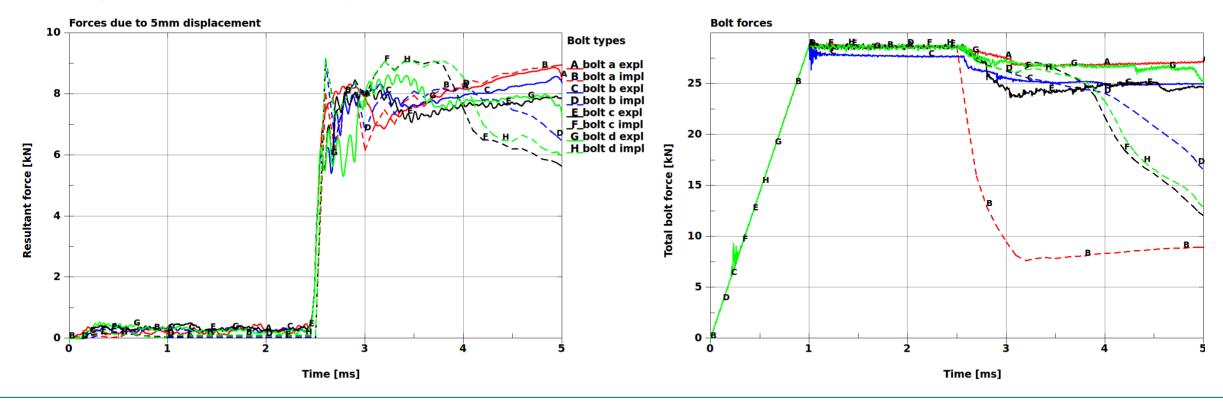
Deformation behavior with explicit simulations

- Similar deformation behavior for all bolt types
- Implicit simulations show less vibrations




Von-Mises stress with implicit simulations

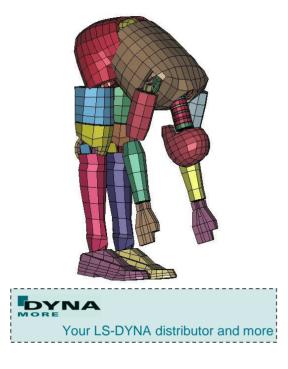
■ Bolt type a) shows no slip and thus no hole bearing


Plastic strains with explicit simulations

■ Bolt type a) shows no slip and thus no hole bearing

Force displacement curves and bolt forces

- All bolt types play initially in the same ball park
- Implicit sometimes behaves different than explicit
 - Different contact treatment, also in terms of stiffness and thickness
 - Might need further investigation



Conclusions


- Many possibilities to model bolts in LS-DYNA
- Many things to keep in mind
 - Keep parts as close together as possible before pre-tensioning
 - Provide reasonable time for pre-tension (>= 1ms)
 - Account for extra space in the bolt hole when using contact null beams
 - When using solid elements in the shaft
 - Try to avoid pentahedrons in the shaft
 - Use new izshear option in *INITIAL_STRESS_SECTION
- Explicit as well implicit works fine
 - Implicit time step independent of element size
 - Might be beneficial for longer time spans
 - Attention is needed when comparing results

Thank you for your attention!

