Virtual simulations of side sled testing

Jakub Prchal

ENCOPIM 🎯 🖼

16th LS-DYNA Forum 2022/10/12

٦Ü

TUV SUD

TÜV SÜD Czech. Mobility Division.

TÜV SÜD Czech | Virtual simulations of side sled testing

Side sled testing. Methods.

ΤŰΛ

DYCOT. Laboratory Equipment.

INSTRON CSA Advanced Catapult:

- Max. force 2.5 MN
- Max. acceleration 90G at 1000 kg/35G at 5000 kg
- Max. deceleration -35G at 800 kg
- Max. speed 100 kph
- Max. gradient 14 G/ms
- Low G simulation 5-12G
- Repeatability 0.5 kph or 1G
- Working stroke 1.7 m
- Sled pallet 3.5 x 1.8 m
- Pulse iteration within 3 shots

Facility

DYCOT. Laboratory Equipment.

ENCOPIM ALIS HDA actuators:

- 3 independently controlled actuators
- Actuators with force up to 60 or 120 kN
- Maximum actuator stroke up to 500 mm
- Sled pallet 1.5 x 1.8 m
- Repeatability ±5% of controlled stroke
- Feed forward learning process
- Fully controlled movement of actuators during the whole test (close-loop control system)

Facility

ALIS. Side sled tests with intrusion.

 Results are biomechanical loads on the dummy or airbag deployment behavior

crash test data

Crash simulation decomposition.

Crash decomposition:

- Door and car trim
- Seat belt
- Airbags
- Seat
- Positioned dummy
- Any part important for interior deformation

ALIS. Preparation phase.

- CAD design of INTRUSION MECHANISM
 - Each project has unique intrusion mechanism depends on:
 - Load case (xNCAP; IIHS;...)
 - Stiffness of the car body
 - Object of customer focus
- FE analysis of INTRUSION MECHANISM
 - Enclosed the behavior to real car structure
- ALIS system tuning to biomechanical loads
 - Iterative process
 - DoE analysis

DoE analyses in ALIS process.

- Defining variables
 - Control pulses sled (Offset X, Scale Y)
 - Control pulses ALIS (Offset X, Scale Y)
 - 8 variables 8D space, 200 variants
- Define responses
 - Maximal deformation of ribs
 - Dummy kinematics (velocity in Y direction)
- Response surface
 - Correlation with crash simulation

DED 8

470.3

Simulation. Results. Biomechanical load.

- Side POLE test
- Ribs compression DSY

ALIS. Validation/Development.

• Validation tests

To adapt ALIS response to simulation response

Development tests

- To evaluate the safety system performance acc. to test matrix
- Different SAB, CAB, HAB, vents, folding, TTF etc.
- Structural parts development
- Variable dummy configuration

Results

- Sensibility matrix
- Recommendation of restraint system set-up
- Validation of FE models

12

TÜΛ

ALIS. Results. Biomechanical load.

- Side POLE test
- Ribs compression DSY

Side sled testing approach.

Experiment Crash test ALIS side sled test 12 10 A LUMMONT TAILLING le test - 32 km/h 11TRRILE01WSDSYC, S1TRRILE01WSDSYC CRASH TEST ALIS SLED TEST Displacement [mm]

Upper thoracic rib - lateral deformation

Time

DoE dummy position.

Motivation

- Robustness of restrain system
- Definition of critical position

Setup

- WorldSID dummy NCAP standard position
- Seat movement X and Z, backrest rotation
 - In the range of standard seat movement
- Tests are focused on rib deflection

Results

- Map of increasing and decreasing value of rib deflection
- Map of the peak value is different for every rib
- Worst case position could be defined for physical test

Conclusion.

Unique task		Combination of FE simulation and sled testing can exactly represent the behavior during the crash test
Speed up!		Development process can be significantly fasten by ALIS sled test
Variability	SI re ne	ed tests can evaluate robustness of strain systems and can be applied on ew areas of development
Validation	Sled valid	test can dramatically increase ity of component FE models
Results	Three out of four best rated cars in EuroNCAP 2021 were tested on ALIS	
Validation Validation Results	Sled validi Three o EuroNC	test can dramatically increase ity of component FE models out of four best rated cars in CAP 2021 were tested on ALIS

Mobility Division

0 - U. D.

TUV

Virtual simulations of side sled testing

Add value.

× 79.90

Jakub Prchal Jakub.prchal@tuvsud.com

Follow us on social media:

0 @tuvsud

in linkedin.com/company/tuvsud

