LS-OPT[®] Pro Status 2023R1

Nielen Stander, Anirban Basudhar, Imtiaz Gandikota (Ansys) Katharina Liebold, Åke Svedin, Charlotte Keisser (DYNAmore) Lars Gräning (Ansys) 2022-10-12

- Integration with Ansys Products
 - LS-OPT Metamodels
 - Twin Builder
- LS-DYNA Fields
- Mode Tracking with topologically different designs
- Conclusion

Integration with Ansys Products: Metamodel Enhancement

Integrating LS-OPT features into Ansys products Metamodels and LS-DYNA Interface

- LS-OPT → optiSLang
 - Extractor (LS-DYNA interface)(.exe)
 - Features:
 - LS-DYNA responses and histories, Crash Injury criteria, Calibration tools, General Mathematical expressions, keyword parsing (variable substitution)
 - GUI
 - LS-Reader integration (d3plot). Supported by LSPP group.
 - In current version (2022R2)

- LS-OPT Metamodels

- Feedforward Neural Networks, Radial Basis Function
 Networks, Kriging, Support Vector Regression
- Status : Delivered library. Integration process under way.

- <u>optiSLang \rightarrow LS-OPT</u>
 - MOP2: Only optiSLang metamodels
 - Metamodel of Optimal Prognosis: <u>automatically selects the</u> <u>metamodel</u>
 - Benchmark comparison on crash examples (next slide)

Metamodel	- Pointselection -			
Polynomial Sensitivity Feedforward Neural Network Radial Basis Function Network Kriging Support Vector Regression Metamodel of Optimal Prognosis	 Full Factorial Latin Hypercube Space Filling User-defined Number of Simulation Points (per Iteration per Case) 20 (default is 5) 			LS-OPT GUI
User-defined First iteration Linear D-Optimal Include pts of Previous Iterations Set Advanced MOP Options		Set Ad	dvanced Options >>	

MOP3: optiSLang + LS-OPT metamodels

- Broadens the library of metamodels
- Scheduled release : July 2023

MOP: Comparison to Existing Metamodels (22 variable truck)

	LS-OPT				oS - MOP	
	RBF	NN	Kriging	МОР	MOP	
	Predicted	Predicted	Predicted	Predicted	Model	
t1, m1	2.510, 349.5	2.510, 349.7	2.510, 327.6	2.510, 348.1		
t2, m2	2.398, 315.4	2.398, 279.6	2.398, 336.3	2.398, 349.3		
t3 , m3	2.510, 340.5	2.510, 293.4	2.510, 329.1	2.510, 348.6		
t4, m4	2.399, 292.6	2.399, 269.7	2.399, 310.9	2.399, 336.4		
t5, m5	2.721, 180.5	2.721, 300.6	2.721, 333.8	2.721, 291.8		
t6, m6	2.721, 275.2	2.721, 180.1	2.721, 255.5	2.721, 328.2		
t10, m10	2.162, 298.5	2.162, 180.2	2.162, 283.5	2.162, 246.5		
t11, m11	2.927, 330.2	3.600, 299.2	2.667, 350.0	3.040, 308.1		
t12, m12	2.948, 330.3	3.257, 330.0	3.350, 267.1	2.499, 223.1		
t64, m64	1.010, 190.6	1.010, 180.1	1.010, 218.6	1.027, 183.8		
t73, m73	1.593, 345.5	1.593, 349.8	1.593, 270.3	1.593, 182.3		
N1_disp	725.5	723.1	722.6	724.4	Kriging	
RMS	9.22	8.00	9.22	9.27		
N2_disp	722.3	725.7	723.1	724.7	Kriging	
RMS	8.77	7.72	8.83	8.99		
Stage1_pulse	6.818	6.03	6.598	5.869	Linear	
RMS	0.0646	0.0624	0.105	0.122		
Stage2_pulse	20.3	21.09	21.03	21.09	Linear	
RMS	0.377	0.378	0.432	0.532		
HIC	1.148e+05	7.93e+04	9.56e+04	1.089e+05	Kriging	
RMS	2.76e+05	7.09e+05	2.83e+05	2.86e+05		
scl_mass	0.8006	0.8001	0.8006	0.8051		
scl_disp	0.9984	0.9991	0.997	0.9994		
scl_stage1_pulse	0.9019	0.7976	0.8728	0.7763		
scl stage2 pulse	0.9577	0.9947	0.9918	0.9946		

Metamodel construction using **800** points RMS error evaluated using **1200** test points

© 2021 ANSYS, Inc.

LS-OPT models vs. MOP2: Sampling rate dependency (22 var.)

Comments: LS-OPT metamodels vs. MOP: Sampling dependency

- In general, LS-OPT metamodels have the potential to improve accuracy for a selection/aggregation system such as MOP
- MOP3, which will include LS-OPT metamodels, also has additional metamodels such as GARS (Genetic Aggregation Response Surface).
- MOP is consistent in selecting the best metamodel on a response-byresponse basis. It's an adaptive system which adjusts to the best metamodel every iteration, every response.

Reduced Order Modeling

ROM Techniques in Twin Builder

Goal: Build field approximations for calibration in the material testing and health care areas.

Ansys Twin Builder uses **blackbox solver agnostic** techniques for creating **Reduced Order Models** for **Non-Linear Systems** such as produced by LS-DYNA:

- Reduction :
 - Projection methods on subspaces: SVD and POD [PCA, Karhunen–Loève Transform] Eigenvalue Analysis
- Machine learning :
 - Advanced Interpolation (Polynomial, Kriging, SVR, GARS) \rightarrow Static ROM Builder
 - **ODE identification** using **Patented Optimization Method** → Dynamic ROM Builder

Ansys Twin Builder and Reduced Order Models, by Valéry Morgenthaler (Ansys Twin Builder)

How does LS-OPT used fields? Digital Image Correlation (DIC) Space-time data

Material Calibration (DIC): Optimal Strain Contours (Dynamore)

LS-DYNA[®] Fields: LS-OPT[®] capabilities

- Utilizes the full-field dynamic output of LS-DYNA (d3plot)
- Fields and Field-histories
 - *Displacement, strain* and *stress*-based quantities
 - Solids and shells
 - Element-based quantities (stress, strain) are mapped to nodes
- Part or Part set can be selected

- Applications
 - Digital Image Correlation
 - *Fields* are mapped to *multi-histories* and *multi-responses* by inverting them
 - Input to *Twin Builder* to create Static/Dynamic ROMs for selected structural components

ROM creation with LS-OPT data export using Static ROM Builder

• In collaboration with: V. Morgenthaler, C. Grivot, O. Crabbé (Ansys Digital Twin)

• Slide courtesy of O. Crabbé

Fast solutions with LS-OPT/LS-DYNA/Ansys Twin Builder

- Challenge: Interactive optimization using full-field LS-DYNA models
- Calibration example:
 - 2 material variables: *c* [0.01, 5], *n* [0.001, 1]
 - Model: 122 samples with LS-OPT
 - 376 strain values
 - 81 time frames

yy-strain (LS-DYNA FE model)

Learning point relevance

yy-strain over time

Error in yy-strain over time

Twin Builder Dynamic ROM model with material [c = 0.9, n = 0.509] (TB User Interface)

In collaboration, with: V. Morgenthaler, C. Grivot, O. Crabbé (Ansys Digital Twin) Example by DYNAmore GmbH, Stuttgart-Vaihingen, Germany

© 2021 ANSYS, Inc.

LS-OPT/LS-DYNA/Ansys Twin Builder – Outlook

- Other applications
 - Patient MRI (cardiac calibration)
 - LS-DYNA substructures
- Outlook
 - Twin Builder as solver for LS-OPT tasks 2023R2 (Jul 2023)
 - LS-DYNA ROM sub-structure (future)

Mode tracking with topologically different designs

LS-OPT: Mode Tracking in the Presence of Shape and Meshing Changes

Current Mode Tracking requires identical mesh for eigenvector comparison between designs

- New method enables MAC calculation for varying shape/mesh
 - Eigenvectors of re-meshed designs not comparable directly

New mesh mapped to reference design

Reference Mesh Transformed to New Mesh

For deeper analysis and further examples see presentation and paper by Anirban Basudhar in this session

© 2021 ANSYS, Inc.

- A number of Ansys integration projects are being implemented:
 - Metamodel selection with MOP promises to improve both LS-OPT and optiSLang modeling capabilities
 - *Surrogate design with Twin Builder*. LS-OPT currently (2023R1) exports to TB.
 - Being extended to optimization (2023R2) and eventually as LS-DYNA surrogates
- LS-OPT is now able to *track vibration modes of topologically different designs* (both in mesh and shape)

