16. LS-DYNA Forum 2022, Bamberg Numerical Validation of a Sailplane Fuselage Crash Test

Christian Pohl¹, Marvin Hofmann¹, Simeon Schmauss², Joscha Loewe²

¹ Technical University of Munich, TUM School of Engineering and Design, Chair of Carbon Composites, Germany ² Akaflieg München e.V., Technical University of Munich, Germany

Agenda

1. Motivation

- 2. Design and model creation
- 3. Material models and characterization
- 4. Test and measurement equipment
- 5. Validation
- 6. Conclusions and outlook

Gefördert durch:

Bundesministerium für Wirtschaft und Klimaschutz

aufgrund eines Beschlusses des Deutschen Bundestages

1 Motivation

- Sailplane and small engine plane accidents account for 5 to 10 fatalities throughout Germany every year
- Under which circumstances?

Agenda

- 1. Motivation
- 2. Design and model creation
- 3. Material models and characterization
- 4. Test and measurement equipment
- 5. Validation
- 6. Conclusions and outlook

2 Design and model creation

Fig. 4: Antares safety is no epitimized raise schedulation [6]

2 Design and model creation

600,000 shell elements (850,000 with dummy)

55,000 cohesive elements

140,000 solid elements (370,000 with dummy)

Fig. 8: Overview of the structural FE model

28 Intel Xeon E5-2690 v3 cores (2.6 GHz)

- 1. Motivation
- 2. Design and model creation
- 3. Material models and characterization
- 4. Test and measurement equipment
- 5. Validation
- 6. Conclusions and outlook

3 Material models and characterization

Primary crash structure

- Composite materials (*MAT_058=*MAT_LAMINATED_COMPOSITE_FABRIC)
- Adhesive bonds (*MAT_240=*MAT_COHESIVE_MIXED_MODE_ELASTOPLASTIC_RATE)
- Core material (*MAT_154=*MAT_DESHPANDE_FLECK_FOAM)

Secondary crash structure and occupant safety environment

- Belt material (*MAT_34=*MAT_FABRIC, *MAT_B01=*MAT_SEATBELT)
- Steel (*MAT_36=*MAT_3-PARAMETER_BARLAT)

3 Material models and characterization

- 1. Motivation
- 2. Design and model creation
- 3. Material models and characterization
- 4. Test and measurement equipment
- 5. Validation
- 6. Conclusions and outlook

Fixation point Fixation point Ø Impact angle 45° Rear crane Front crane Fuselage 20. 14.1 Traverse R19 Impact area H/Fixation point Fixation point 19.8 ca. 36 m Trajectory Top view Lateral view

4 Test and measurement equipment

- 5° yaw angle against barrier
- Impact velocity 15 m/s

Fig. 16: Saiphanealpotsitioning floe faste test execupition of the test

4 Test and measurement equipment

- H3 dummy
- Inertial measurement unit
- Digital-Image-Correlation system
- 6 high-speed cameras
- Strain gauges in the cockpit area

Fig. 18: H3 crash dummy before crash the test

- 1. Motivation
- 2. Design and model creation
- 3. Material models and characterization
- 4. Test and measurement equipment
- 5. Validation
- 6. Conclusions and outlook

5 Validation

Fig. 19: Side view of crash test vs simulation

5 Validation

Pohl et al. | 16. LS-DYNA Forum 2022, Bamberg

5 Validation

Fig. 25: Injury classification of sailplane accidents [9]

- 1. Motivation
- 2. Design and model creation
- 3. Material models and characterization
- 4. Test and measurement equipment
- 5. Validation
- 6. Conclusions and outlook

6 Conclusions and outlook

- First step towards virtual certification in aerospace sector
- Analysis of sudden deceleration at the second impact
- Numerical studies of the crash test and dummy
- Optimization of crashworthiness

6 Conclusions and Outlook – Simulation with 20 m/s

0:cpr_d3plot : LS-DYNA user input : STATE 1 ,TIME 0.0000000E+00

Thank you for your attention!

Questions?

References

[1]	Lindner T.K.: Ermittlung eines Anforderungsprofils für den Entwurf von Sicherheitscockpits in Kleinflugzeugen und Bewertung möglicher konstruktiver Lösungen, TU Braunschweig, 2019.
[2]	Kudla C.: Auslegung und Detailkonstruktion des Rumpfes des Hochleistungs-Segelkunstflugzeugs Mü32. Bachelor's Thesis,
[3]	Lange Aviation GmbH: Crash-Konzept Antares 21E, 01. September 2022,
	https://www.lange-aviation.com/de/produkte/antares-21e/sicherheit/.
[4]	Schuster U., Wolf K.: "Improvement of Sailplane Crashworthiness through Keel Beams with Silicone Cores." Technical
	Soaring 38.2 (2014): 16-26.
[5]	Jeberien K.: Entwicklung und FEM-gestützte Optimierung eines Energieabsorberkonzepts für Segelflugzeuge zur Steigerung der Unfalltauglichkeit, Master's Thesis, TUM-LCC, 2021.
[6]	Hofmann M.: Modellierung und FEM-Simulation des Crashs einer Segelflugzeug-Rumpfstruktur in LS-Dyna, Term Paper, TUM-LCC, 2021.
[7]	Löwe J.: Konzeptionierung eines Crashtests an einer Segelflugzeugrumpfstruktur, Bachelor's Thesis, TUM-LCC, 2021.
[8]	Daily Mail UK. Air show crash drama: Pilot's amazing escape as stunt glider smashes into runway as 15,000 fans look on. 2010. url: https://www.dailymail.co.uk/news/article-1311828/Shoreham-air-crash-pilotescapes-stunt-glider-smashes-runway.html.
[9]	Sperber M., Untersuchung des Insassenschutzes bei Unfällen mit Segelflugzeugen und Motorseglern, TÜV Rheinland Kraftfahrt GmbH 1998.