Acoustics Simulation of RJ-45 Connector Assembly

Satish Kumar M, Application Engineer II Sunil Acharya, Principal Application Engineer

- Background
- Approach taken
- Lessons Learned and Summary
- Open Discussion

 Snap-fit assembly is a common feature in manufacturing of various industrial thermoplastic products.

- Connector industry applications
 - Mechanical assembly
 - Maintaining electrical contact

Fiber Optics

Connectors*

Power Connectors*

*https://www.te.com/usa-en/products/connectors.html

Motivation:

- Snap Fit Design Challenges
 - Dynamic assembly/contact/robustness
 - New designs , Smaller Size, Complex Shapes
 - New materials (Polymeric)
- Traditional design typically focusses on Reaction Force Calculation
 - Accounts for Haptic Feedback during Assembly
- Lack of design approaches for "acoustic feedback"
 - Important during assembly without clear "line of sight" (eg: automotive connectors)
 - Acoustics is closely related to "Perception of Quality" (eg: keyboard clicks, watch mechanism)

Need Explicit Solver with Multiphysics Capabilities

- RJ45 stands for 'Registered Jack 45'.
- RJ45 connectors are primarily used for plugging an internet-enabled device directly into hardware such as a modem, router, or server.
- Types of RJ45 Connector
 - O Male Connector
 - Female Connector
- RJ45 Pin Assignment
- RJ45 plug connections are based on 8P8C cabling.

Approach taken – Workflow Setup

RJ45 Connector Geometry

- Solid geometries.
- SpaceClaim was used to prepare the model for FEA.
- The most important parts are,
 - Female Connector/Housing
 - Male Connector/Plug
 - Housing Pins
 - Plug Pins

FE model setup in LS-DYNA for structural analysis

- Pins meshed with Hex elements.
- General contact (μ = 0.1)
- Loading conditions are,
 - Assembly latch pushed in negative ydirection with 50 N.
 - Plug pushed in negative z-direction 20 mm.
 - Assembly latch load released to capture snap fit.
 - Assembled idle position.
- Boundary conditions are,
 - Housing fixed in all DOFs.
 - Plug fixed in x and y directions.

Loading conditions

Boundary conditions

Fix housing

FE model setup in LS-DYNA for acoustic analysis

- Boundary element method
 - Velocities from temporal analysis are recorded in time domain.
 - Converted to frequency domain.
 - Helmholtz equation is solved,
 - $\Delta p + k^2 p = 0$

- *FREQUENCY_DOMAIN_ACOUSTIC_BEM is used to activate acoustics analysis
- Inputs to be prescribed are,

OPTION	VALUE	
Density of Fluid	1.21E-12 ton/mm ³	
Speed of Sound	3.4E+05 mm/s	
Minimal frequency	0.0 Hz	
Maximal frequency	20000.0 Hz	
Reference pressure	2.0E-11 MPa	

Field point away from the connector

Boundary Elements

Scenario No.	TOTAL TIME	ASSEMBLY TIME	FRICTION	MATERIAL MODEL
Scenario 1	0.25 s	0.15 s	0.1	PLASTIC
Scenario 2	0.35 s	0.25 s	0.1	PLASTIC
Scenario 3	0.35 s	0.25 s	0.1	ELASTIC
Scenario 4	1.0 s	0.25 s	0.1	PLASTIC

Part	LS-DYNA Equivalent material model	Material Properties
Plug pins/Housing pins	*MAT_ELASTIC	E=1.1E+05 MPa μ = 0.34
All other parts		E=2513 MPa, μ = 0.3975
	*MAT_ELASTIC/*MAT_PIECEWISE_LINEAR_PLASTICITY	E=2454.55 MPa, μ = 0.4, sigy=23.3902 MPa

Note: The above results are from one simulation out of the four different iteration that were run.

Structural Analysis - Results

Haptic response

- No relevance to assembly time.
- Plasticity (isotropic hardening)

reduces reaction force.

Acoustic Response

Ansys

Acoustic Response

Acoustic Response

Summary

- Assembly time is inversely proportional to sound pressure level (SPL dB).
- Plasticity reduces the reaction force and has dampening effect on the acoustics response
- Challenges in postprocessing the vibro-acoustics with 2 deformable bodies in contact
- Future Work to include:
 - Studying Effect of materials on acoustics with advanced material models for thermoplastics
 - Experimental Validation
 - Custom workflows in ANSYS Sound for post-processing
 - Additional multi-physics relevant to connector industries (eg: electric, thermal)

LSDYNA offers single solver environment for structural dynamics and vibro-acoustics

SPL dB α

2022 16th LS-DYNA Forum Thank You!

Many Thanks to ..

Dilip Bhalsod, Senior Principal Application Engineer, ANSYS Yun Huang, Principal R&D Engineer, ANSYS Zhe Cui, Senior R&D Engineer, ANSYS Clement Dendieval, Sr Product Sales Manager, ANSYS

