Framework of conducting a reliability analysis of concrete beams using stochastic nonlinear FE models in LS-Dyna

Connor Petrie, MASc, EIT Fadi Oudah, PhD, PEng (Fadi.Oudah@dal.ca)

Department of Civil and Resource Engineering, Dalhousie University, Canada Center for Innovation in Infrastructure (CII) Structural Assessment and Retrofit Research Group (SAR)

Table of Content

- 1. Introduction
- 2. Research Objective
- 3. Research Gap
- 4. Stochastic Finite Element
- 5. Discretization of LS DYNA models to include stochastic mesh
- 6. Reliability Analysis using stochastic FE models
- 7. Summary

Research Overview

Objective:

Develop a reliability-based framework accounting for the spatial variation of concrete using stochastic FE to assess the safety of in-service concrete beams.

Methodology:

- 1. Create and validate a nonlinear FE model of the concrete beam using LS-DYNA.
- 2. Develop a Python code to discretize the validated model to include the stochastic mesh of concrete strength.
- 3. Develop an automated computer code to generate many stochastic FE models of the validated beam.
- 4. Conduct a reliability analysis considering different levels of concrete spatial variability using the automated framework to assess the safety of concrete beams designed per the North American building codes.

Research Gaps

Assessing Existing Concrete Beams:

 North American design codes does not account for the <u>spatial variability</u> present in the concrete that makes up the beam when calibrating the design equations although they affect the safety of the member.

Stochastic Finite Element (FE)

Stochastic FE requires discretizing the member into two meshes that act together:

- Stochastic FE refers to modeling certain parameters within the FE model to capture the spatial variability in 3-dimensions.
- This allows the user to capture the spatial variability in the structural response using random fields.
- In the case of a reinforced concrete beam, the stochastic mesh can be generated to capture the spatial variability of the concrete strength.

Stochastic FE: Random Field Generation

EOLE Method for generating lognormal 3D Random Fields Li and Der-Kiureghian 1993):

• Stochastic FE (SFE) requires discretizing the member into two meshes that act together:

Stochastic FE: FE Model Validation

Task 1. Develop and validate nonlinear SFE model of EB FRP strengthened concrete beam using LS-DYNA.

DALHOUSIE UNIVERSITY

Stochastic FE: Strengthened Beam Failure

Task 1. Develop and validate nonlinear SFE model of EB FRP strengthened concrete beam using LS-DYNA.

Cracking at Failure (t > 1.75s):

Bond at Failure (t > 1.75s):

Stochastic FE: Strengthened Beam Failure

Task 2. Discretize the LS DYNA model to include a secondary stochastic mesh.

A command file (.Cfile) is generated to discretize the element-based FE mesh to have many *PARTs in LS DYNA so that the stochastic-based mech can be overlaid.

To represent the concrete as a 3D random field, unique ***PART**, ***MAT**, ***CONTACT**, ***SET_SEGMENT**, and ***ERODE**, ***ELEMENT** are assigned to each stochastic element in the stochastic-based mesh

Discretization of Concrete Beam

Stochastic FE: Automated Computer Code

Task 3. Develop a computer code to conduct reliability assessment using SFE models of the validated beam.

Stochastic FE: Reliability Analysis Framework

Task 3. Develop a computer code to conduct reliability assessment using SFE models of the validated beam.

Stochastic FE: Stochastic Input

Task 3. Develop a computer code to conduct reliability assessment using SFE models of the validated beam.

Stochastic FE: Resistance Model

Resistance model established using the ultimate response of 3,066 SFE models, fitted with gaussian distributions.

 μ_{Mu} = Mean of M_{u} ; σ_{Mu} = Standard Deviation of M_{u} ; COV_{Mu} = coefficient of variation of M_{u}

<u>Histograms of M_{μ} with fitted normal pdf (Tension-Controlled).</u>

Ultimate Moment Resistance, M₁₁ (kNm)

Ch 3. SFE Reliability: Summary

- An automated framework is presented for conducting stochastic FE reliability analysis using an LSDYNA-Python-MATLAB interface.
- Numerical example using stochastic FE on the reliability of 8 FRP strengthened concrete beams in LS DYNA.
- Results showed that automation of the discretization of the stochastic mesh in LS DYNA allowed for better efficiency through batch creation of multiple stochastic FE models to be solved in parallel.
- The use of stochastic FE in establishing the resistance model in structural reliability analysis will aid in improving the evaluation of components with complex performance functions such as FRP strengthened concrete beams.

Acknowledgements

The author would like to thank the National Science and Engineering Research Council (NSERC), Norlander-Oudah Engineering Ltd. (NOEL), and MITACS for their financial assistance for this research.

NORLANDER OUDAH ENGINEERING LTD NOEL MITTICS Accelerate

Thank You

