Abuse characterization and simulation of battery cells and cell arrangements

M. Schwab, H. Pothukuchi, S. Riemelmoser, J. Vinkovic

16th LS-DYNA Forum 2022

IN PHYSICS WE TRUST

Testing and Identification

PHYS

- I.

С S W E

Multiphysics of battery cells

T

 ϑ

 λ

p

 \underline{q}

k

T

Multiphysics of battery cells

29

 \mathcal{D}

k

Creation of the mechanical simulation model with VALIMAT® & LS-DYNA

1.

© Copyright 4a engineering GmbH - 10.10.2022 M. Schwab, H. Pothukuchi, S. Riemelmoser, J. Vinkovic, pres_22101001_mars_jvin_eng_DynaForum_2022

Mechanical Test results overview - 18650 battery cell

Plane strain indentation

3 point bending

• Remark: Different test setup used for the 1mm/s (max penetration displacement differs).

FE model overview – 18650 battery cell

Crushable foam MAT063 compression curve optimization

Source: Sahraei et. al; "Modelling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions", Journal of Power Sources 220 (2012) 360-372

IN PHYSICS WE TRUST

Plane-crush, default MAT024 & MAT063 (based on literature values)

- Plane-crush mechanical simulation model shows similar stiffness up to 4 mm displacement. After this point most of the fin contact switches from the battery casing to the jelly roll of the battery.
- Densification is underestimated → adjustment of compression curve required

Q

Plane-crush, adjusted MAT024 & MAT063+MAT_ADD_EROSION

Plane-crush, adjusted MAT024 & MAT063+MAT_ADD_EROSION

- ◆ ◆ ◆ Mean value curves testing
 - test curves
 - validation results of simulation
- Failure behaviour at higher intrusion also well predicted

3-point bending, adjusted MAT024 & MAT063+MAT_ADD_EROSION

Same model used for 3 point bending load case:

- good representation of qualitative failure mode
- further optimization on post fracture behaviour required
- Work in progress...

Multiphysics of battery cells

T

 ϑ

 λ

p

 \underline{q}

k

T

Multiphysics modeling approaches in LS DYNA

	Solid layer model	Tshell model	Batmac model
+ - 40			
Keyword	*EM_RANDLES_SOLID	*EM_RANDLES_TSHELL	*EM_RANDLES_BATMAC
Advantages	 Analysis of the different layers is possible 	 Benefical modeling of thin cells Reduced computational effort 	 Modeling with respect to mechanical and thermal problem Least computational effort
Disadvantages	 Computational effort Characterization of the materials of the layers required 	 Homogenized mechanical material model Behavior of the layers can not be analyzed in detail 	 Homogenized material models Behavior of the layers can not be analyzed

Electrical modelling and characterization

Identification of the parameter based on the 4a HPPC test

Abuse simulation of a single cell

Modeling of the electrical behavior, the internal short circuit and the exothermal reaction

Overheat test of a battery cell

- Overheating of a fully charged 18650 battery cell (Panasonic NCR18650B) at the bottom
- Measurement of the temperature at the cell as well as in the chamber with 6 thermocouples
- Measurement of the voltage

Overheat test of a battery cell

Overheat test of a battery cell

Multi-cell mockup – experimental investigation

- Thermal runaway of the center cell induced by heating with a heating wire
- Temperature and voltage measurement of each cell
- Video recording with high-speed camera

Multi-cell mockup – simulation results

 \cdot experiment — simulation

Conclusion and outlook

IN PHYSICS WE TRUST

Conclusion

Outlook

- Development of test setups for further characterizations of battery cells especially with regards to thermal and mechanical abuse
- Automatic identification of the parameters required for the resulting FE model
- Optimization of battery packs addressing the thermal propagation and crash behavior

Improve your developments with our expertise in testing and simulation!

Martin Schwab

martin.schwab@4a.at +43 (664) 80106 640

