

DYNAmore Express Webinar, 03 June 2022

Solid element formulations in LS-DYNA

Christoph Schmied, DYNAmore

Motivation

Typical applications

- Foam Structures
- Rubber components
- Cast iron parts
- Solid barriers

- Plastic parts
- Bulk forming
- Thick metal sheets
- Elastic tools

- Impact analysis
- Civil engineering
- ... and more

Motivation

What are solid elements?

- Solid elements are three-dimensional finite elements that can model solid bodies and structures without any a priori geometric simplification
- Finite element mesh visually looks like the physical system
- Effective assembly of complicated geometries
- Boundary and loading conditions treated more realistically (compared to shells or beams)
- No constitutive assumptions required

But ...

- Expensive mesh refinement: Curse of dimensionality
- Higher effort: mesh preparation, CPU time, post-processing, …
- Often poor performance for thin-walled structures and low-order formulations (locking problems)

Motivation

Requirements

Requirements

- No volumetric locking (rubber-like, elasto-plastic)
- Good bending performance (also for thin elements)
- No mesh distortion sensitivity (huge deformation)
- Coarse mesh accuracy
 - Size of real engineering application sometimes not allows to model with converged mesh
- Robustness
- Efficiency

Element technology

- Reduced integration with stabilization
- Selective reduced integration
- Mixed methods
- Nodally based formulations
- Composite (macro) formulations
- Cosserat point based
- Special interpolations

A first look

Safari of solid formulations

Solid element formulations

*SECTION_SOLID, ELFORM

- EQ.-18: 8 point enhanced strain with 13 incompatible modes
- EQ.-2: 8 point hexahedron intended for poor aspect ratios, accurate formulation
- EQ.-1: 8 point hexahedron intended for poor aspect ratios, efficient formulation
- EQ.1: Constant stress solid element: default element type Cosserat Point Element with hourglass type 10
- EQ.2: 8 point hexahedron
- EQ.3: Fully integrated quadratic 8 node element with nodal rotations
- EQ.23: 20-node solid formulation
- EQ.62: 8 point brick with incompatible modes by assumed strain

- EQ.4: S/R quadratic tetrahedron element with nodal rotations
- EQ.10: 1 point tetrahedron
- EQ.13: 1 point nodal pressure tetrahedron
- EQ.16: 4 or 5 point 10-noded tetrahedron Cosserat Point Element with hourglass type 10
- EQ.17: 10-noded composite tetrahedron
- EQ.60: 1 point tetrahedron

- EQ.15: 2 point pentahedron element
- EQ.115: 1 point pentahedron element with hourglass control

Not shown in this overview

- More higher order formulations
- Cohesive and gasket formulations
- Isogeometric element formulations
- ALE, EFG, SPG, ...

Constant stress solid

ELFORM = 1 (the default)

- Single point integration with hourglass control
- Efficient and accurate
- Can sustain largest nonlinear deformation
- Requires hourglass control
 - Choice of hourglass formulation
 - and values remains an issue

Example for Hourglassing: Stretching of a notched steel specimen

Notched steel specimen

Constant stress solid

Hourglass control

- IHQ = 1...5
 - Viscous form (1,2,3) for higher velocities
 - Stiffness form (4,5) for lower velocities
 - Exact volume integration recommended (3,5)

IHQ = 6

- Recommended in most situations
- The QBI (Quintessential Bending Incompressible) hourglass control by Belytschko and Bindeman
- Hourglass stiffness uses elastic constants
- Sometimes modified QM makes sense (watch hourglass energy)
- Used in implicit analysis

- IHQ = 7
 - Similar to type 6
 - Total deformation instead of incremental update

IHQ = 9

- More accurate results for distorted meshes
- Hourglass stiffness can be based on current material properties for materials 3, 18 and 24

8 point hexahedron ELFORM = 2

- Selective reduced integration (B-Bar method)
 - Alleviates volumetric locking assuming constant pressure
 - Some materials use full integration to better treat compressible behavior
- No hourglass stabilization needed
- Slower than ELFORM = 1
- More unstable in large deformation applications (negative Jacobian)
- Too stiff in many situation
 - Pure bending modes trigger spurious shear energy
 - Getting worse for poor aspect ratios
 - Counter measures
 - Reduced integration, ELFORM = 1
 - Modified/Enhanced strains, ELFORM = -2, -1, -18, 62
 - Higher order, ELFORM = 23, …

Improved solid

ELFORM = -1 and -2

ELFORM = -2

- Like ELFORM = 2 but intended for poor aspect ratios
- Assumed strain approach reduces spurious stiffness without affecting the true physical behavior of the element
- Accurate formulation, about 2 to 3.5 times slower than ELFORM = 2

ELFORM = -1

- More efficient implementation of ELFORM = -2
- About 1.2 times slower than ELFORM = 2
- Side effect: Weak deformation mode similar to hourglass mode, but not truly hourglassing, hence no stabilization
- But often sufficient

www.dynalook.com

Thomas Borrvall: A heuristic attempt to reduce transverse shear locking in fully integrated hexahedra with poor aspect ratio Salzburg 2009

Nodal rotation solid ELFORM = 3

- Quadratic 8 node hexahedron with nodal rotations, 6 DOF per node
- Derived from 20 node hexahedron
- Full integration with 14 points
- Well suited for connections to shells
- Good accuracy for small strains
- Slower than ELFORM = 2
- Tendency to volumetric locking
- References
 - Teng, H: Solid elements with Rotational Degree of Freedom for Grand Rotation Problems in LS-DYNA, 11th International LS-DYNA Users Conference, 2010
 - Pawlak, TP and Yunus, SM: Solid elements with rotational degrees of freedom Part 1 – Hexahedron elements, IJNME 1991

20-node hexahedron ELFORM = 23

- 8 corner + 12 edge nodes
- Serendipity formulation (without mid-face nodes) faster than 27 node hexahedron (Lagrange)
- 14 integration points
- Improved bending performance and reduced volumetric locking
- Often "coarser" meshes sufficient
- Easy conversion of 8-noded hexahedra
 - Append _H8TOH20 to *ELEMENT_SOLID
 - Mid-side nodes automatically generated -
 - Ideal if edges are initially straight

Slide 12 of 29

dv

dz

Solid formulations in LS-DYNA | public

Standard tetrahedron ELFORM = 10

- 1-point constant stress element
- No hourglass stabilization needed (valid for all tetrahedra)
- Usually too stiff
 - Volumetric locking
 - Only applicable for foams with v = 0
 - Not recommended in general
- Often used for transitions in meshes *CONTROL_SOLID, ESORT=1
- Better than degenerated hex element

Nodal pressure tetrahedron ELFORM = 13

- 1-point constant stress plus nodal pressure averaging
- Materials
 - Common models supported for explicit
 - All models supported for implicit
- Parts with different materials should not share nodes
 - nodal pressure averaging will cause spurious energy
 - exception if the same bulk modulus
- Better performance than ELFORM = 10 if $\nu > 0$ (metals, rubber, ...)
 - Significantly less volumetric locking
 - Well suited for (nearly) incompressible material behavior

Nodal rotation tetrahedron ELFORM = 4

- Quadratic 4 node tetrahedron with nodal rotations, 6 DOF per node
- Derived from 10 noded tetrahedron
- 4 or 5-point integration
- S/R integration
- Well suited for connections to shells
- Good accuracy for small strains
- Tendency to volumetric locking
- References
 - Teng, H: Solid elements with Rotational Degree of Freedom for Grand Rotation Problems in LS-DYNA, 11th International LS-DYNA Users Conference, 2010
 - Pawlak, TP and Yunus, SM: Solid elements with rotational degrees of freedom Part 2 – Tetrahedron elements, IJNME 1991

Higher order tetrahedra

ELFORM = 16 and 17

ELFORM = 16

- 4 or 5-point integration
- Good accuracy for moderate strains
- High CPU cost
- Use part definition in contacts correct segment generation
- Easy conversion of 4 noded tets via *ELEMENT_SOLID_TET4TOTET10
- Full output of midside nodes with *CONTROL_OUTPUT, TET10=1

ELFORM = 17

- composed of 12 linear sub-tetrahedrons
- Properties like ELFORM = 16

Pentahedra

ELFORM = 15 and 115

ELFORM = 15

- 2-point selective reduced integration
- Needs hourglass stabilization for twist mode
- Often used as transition element (ESORT=1)

ELFORM = 115

- 1-point reduced integration
- Hourglass stabilization needed
- Analogue to hexahedron ELFORM = 1 with Flanagan-Belytschko hourglass formulation

Slide 18 of 29

Enhanced strain solid

ELFORM = -18

- New in R13
- 13 incompatible modes
 - 9 improve bending
 - 4 alleviate volumetric locking
 - Requires the solution of a compatibility equation in each element
- Expensive for explicit
 - 2 to 5 times slower than ELFORM = 2
 - Depends on severity of element deformation and/ or nonlinear effects in materials
- Element cost relative for implicit
 - Compared to global linear algebra element expense becomes insignificant
 - Increased accuracy seems to compensate for the cost
- Version for linear implicit analysis with 12 incompatible modes: ELFORM = 18 (available since at least R7)

Slide 19 of 29

QBI solid ELFORM = 62

New in R13

- The fully integrated QBI Quintessential Bending Incompressible element by Belytschko and Bindeman
- No hourglass stabilization needed
- Assumed strain field alleviates shear and volumetric locking
- Enhanced bending performance
- Only 10% slower than ELFORM = 2
- Reference
 - Belytschko, T. and Bindeman, L. P. Assumed Strain Stabilization of the Eight Node Hexahedral Element, Comp. Meth. Appl. Mech. Eng. 105, 225-260 (1993)

© 2022 DYNAmore GmbH

Higher order solids ELFORM = 24 ... 29

- Quadratic family
 - ELFORM = 24, *ELEMENT_SOLID_H27
 - ELFORM = 25, *ELEMENT_SOLID _P21
 - ELFORM = 26, *ELEMENT_SOLID _T15

- Cubic family
 - ELFORM = 27, *ELEMENT_SOLID _T20
 - ELFORM = 28, *ELEMENT_SOLID _P40
 - ELFORM = 29, *ELEMENT_SOLID _H64

Remain under development

A closer look

Comparisons, statistics, ...

Bending performance

Shear locking ?

- 3 point bending of aluminium strip
 - Dimension: 300×60×5 mm^3

- Convergence study, aspect ratio of 4:1
 - Up to 8 plys in thickness direction

Bending test

Convergence and runtime

- Good convergence of most element formulations
- ELFORM = 2, 3, 10, 13 are (as expected) stiff
- Quadratic formulations expensive but "coarser meshes" would be sufficient

Bending test

Convergence and runtime

Runtime (rough estimate) normalized to ELFORM = 2

How to compare between hexahedron and terahedron

More common tetrahedron mesh (not shown here)

29 nodes \times 3 dofs 48 \times 1 integration points

Plus smaller step size → more expensive

Taylor bar impact

Volumetric locking ?

Reference, Wilkins, ML et al.: Impact of cylinders on a rigid boundary, Journal of Applied Physics, 1973

Some statistics

Timestep control

Critical time step

Characteristic element length

Some statistics

Timestep control, points and nodes

Timestep size for solid elements with same edge length

Conclusions and remarks

Use hexahedron elements if possible

.... never final

- ELFORM = 1 with hourglass type 6 or ELFORM = 2, 3
- ELFORM = -1, -2 for "flat" hexas
- ELFORM = 23 shows good coarse mesh accuracy, but in general linear elements more robust
- ELFORM = -18 and 62 promising new candidates
- For complex solid structures, use tetrahedron elements
 - ELFORM = 16/17 are the most accurate tets, but might not be suited for large strains
 - ELFORM = 13 needs finer mesh, well suited even for large strains (check if material is supported)
 - For metals or plastics (moderate strains), use ELFORM 4, 13, 16, or 17
 - For rubber materials (incompressible, large strains) use tet type 13
 - For bulk forming problems (large strains!), use ELFORM = 13 and r-adaptivity
- Pentahedron elements 15, 115 should only be used as transition elements
- In implicit analysis costly element formulations may be used not as significant for speed as in explicit analysis

ted)

Thank You

DYNAmore GmbH Industriestr. 2 70565 Stuttgart-Vaihingen Germany

Tel.: +49 - (0)711 - 459 600 0 Fax: +49 - (0)711 - 459 600 29 info@dynamore.de

www.dynamore.de www.dynaexamples.com www.dynasupport.com www.dynalook.com

© 2022 DYNAmore GmbH. All rights reserved. Reproduction, distribution, publication or display of the slides and content without prior written permission of the DYNAmore GmbH is strictly prohibited.

DYNAmore worldwide Germany - France - Italy - Sweden - Switzerland - USA

