
New features in LS-DYNA R9.0.1

Release R9.0.1 published in August 2016

- This presentation about major changes since R8.1
- Comprehensive list of enhancements and corrections in http://www.dynasupport.com/news/ls-dyna-r9.0.1-r9.109912-released

LS-DYNA versions

- Version numbering scheme
 - Major branches called R6, R7, R8, R9, ...
 - Official releases such as R6.1.2, R7.1.3
- Robust production version
 - Release R7.1.3 from May 2016
 - Recommended for daily use in crash and occupant simulation

Latest official versions

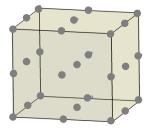
- Release R8.1 from February 2016: Webinar slides on www.dynamore.de
- Release R9.0.1 from August 2016: New features shown in this presentation

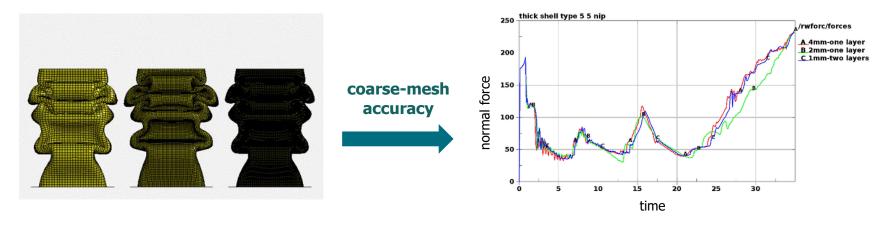
Overview

- Element Technology & IGA
- Contact
- Material models
- Forming applications
- Airbags
- Implicit analyses
- Frequency Domain
- MPP
- Miscellaneous

- Meshfree methods
- ALE / S-ALE
- Electromagnetics
- CFD & FSI
- CESE

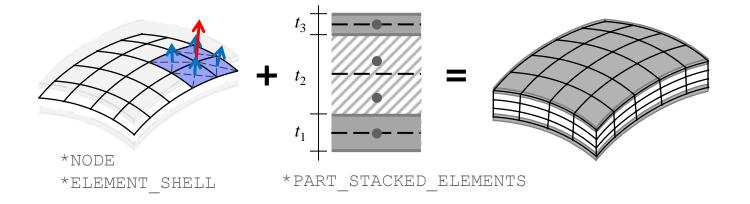
Bug fixesConclusion




Element Technology & IGA

27-node solid element

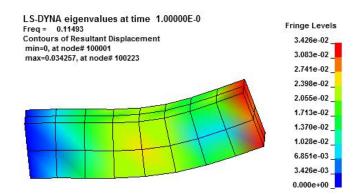
- New element formulation ELFORM = 24 on *SECTION_SOLID
 - Accurate for large deformation, severe distortion
 - Selective reduced integration to alleviate volumetric locking
 - Supports *ELEMENT_SOLID_H8TOH27
 - Excellent behavior in bending with 1 element over plate thickness!

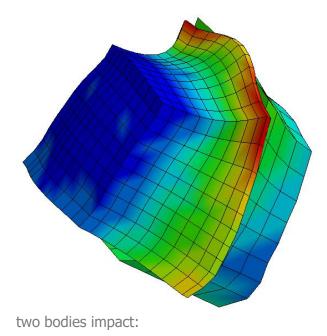


Stacked elements

- New keyword *PART_STACKED_ELEMENTS
 - Layered shell and/or solid element model for shell-like structures
 - Application examples: sandwich plate systems, composite laminates, ...
 - Definition of surface geometry and layup sequence
 - Automatic mesh generation by extrusion

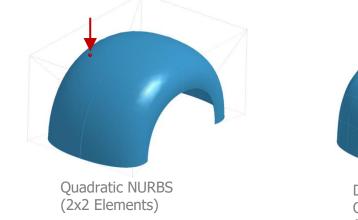
picture credit: Wikipedia





IGA for solids

- New keyword *ELEMENT_SOLID_NURBS_PATCH
 - Enable isogeometric analysis for solid elements
 - Supports explicit and implicit analysis, contact and eigenvalue analysis, etc.
 - To be used with ELFORM=201 on *SECTION_SOLID

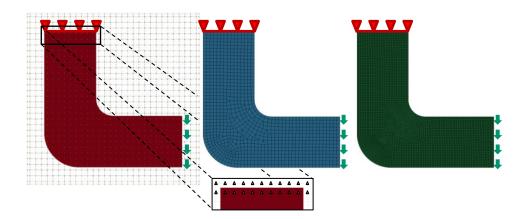

effective stress distribution

IGA boundary conditions

- New keyword *CONSTRAINED_NODE_TO_NURBS_PATCH
 - Add additional massless nodes (*NODE) to the surface of a NURBS patch (desired position)
 - Possibility to apply force and displacement boundary conditions at arbitrary position

Deformation Quadratic NURBS (10x10 Elements) Deformation

Quadratic NURBS (40x40 Elements)

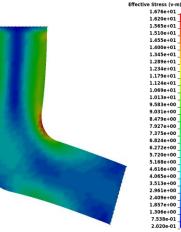


IGA: Trimmed NURBS

- Add trimmed NURBS capability
 - For surfaces that contain holes or have arbitrary shapes
 - Define NL trimming loops to specify a trimmed NURBS patch
 - Use *DEFINE_CURVE (DATTYP=6) to define trimming edges in the parametric space
 - Boundary conditions via new keyword *CONSTRAINED_NODE_TO_NURBS_PATCH (CNTNP)

Example: L-Shape

- Dirichlet-BC's (kinematic):
 1. via SPC on "closest" Control Points
 2. via CNTNP (con=111111, SF varying)
- Neumann-BC's (load):
 via CNTNP (con=0)
 + *LOAD_NODE_SET

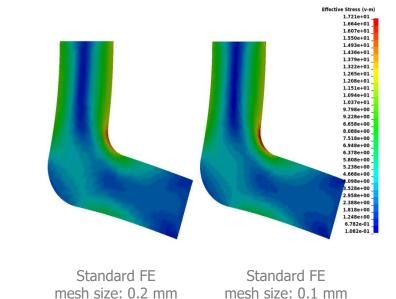


IGA: Trimmed NURBS

Effective Stress (v-m)

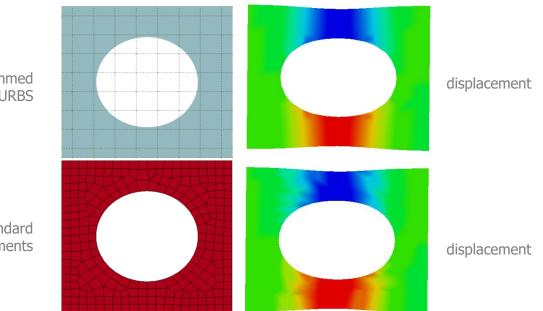
4.593e-01

L-Shape results: Deformation and von Mises stresses



1.720e+01 1.664e+01 1.608e+01 1.552e+01 1.497e+01 1.441e+01 1.385e+01 1.329e+01 1.273e+01 1.218e+01 1.162e+01 1.106e+01 1.050e+01 9.944e+00 9.386e+00 8.828e+00 8.270e+00 7.712e+00 7.154e+00 6.596e+00 6.039e+00 5.481e+00 4.923e+00 4.365e+00 3.807e+00 3.249e+00 2.691e+00 2.133e+00 1.575e+00 1.017e+00

Trimmed NURBS (quadratic) 30x30 elements mesh size: 0.33 mm SPC on CPs


> LSTC ivermore Software echnology Corp.

Trimmed NURBS (quadratic) 30x30 elements mesh size: 0.33 mm SPC on "massless" nodes via CNTNP

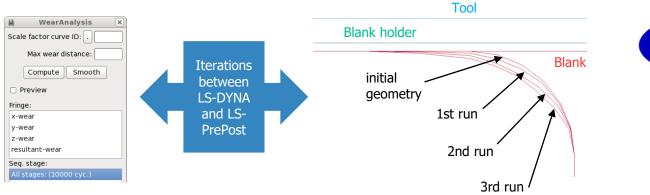
IGA: Trimmed NURBS

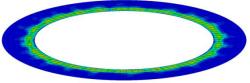
Another example: plate with hole

trimmed NURBS

standard shell elements

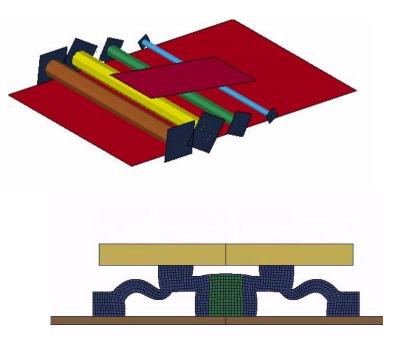



Contact



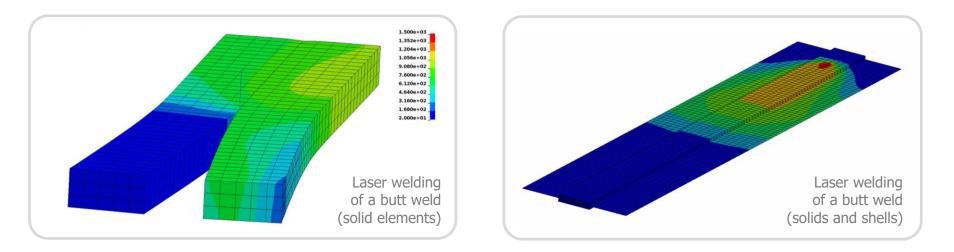
Wear processes

- New keyword *CONTACT_ADD_WEAR
 - Simulating wear is of interest for improving tool design
 - Archard and User wear laws
 - Post process wear in LS-PrePost
 - Modify geometry in LS-PrePost based on wear, using *INITIAL_CONTACT_WEAR


wrinkling tendency influences wear on binder

Mortar contact

- Several enhancements and improvements
 - Forming mortar contact now runs with deformable solid tools and honors ADPENE
 - Support rotational degrees of freedom when contact with beam elements
 - Maximum allowable penetration takes master thickness into account
 - Account for sharp edges in solid elements
 - When solid elements are involved, default stiffness is increased by a factor of 10
 - The OPTT parameter on *PART_CONTACT for the contact thickness of beams is now supported



Tied contact for welding

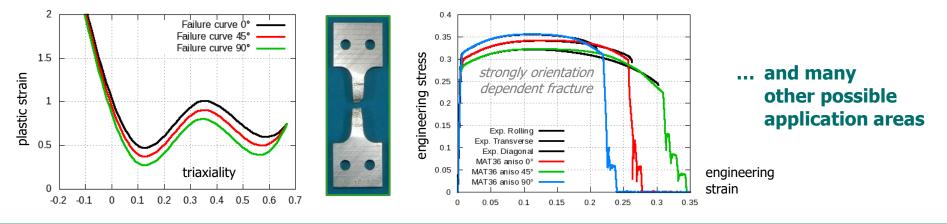
New keyword *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIED_WELD_THERMAL

- As regions of the surfaces are heated to the welding temperature and come into contact, the nodes are tied. (Below welding temperature: standard sliding contact behavior)
- Heat transfer in welded contact zones differs as compared to unwelded regions

More contact enhancements

- Change "interface pressure" report in **intfor** file from abs(force/area) to –force/area for correct representation of tied interfaces in tension
- Add support for ***DEFINE_REGION** to define an active contact region for MPP contacts
- Add frictional work calculation for beams in *CONTACT_AUTOMATIC_GENERAL
- Add new option FTORQ for torque introduced by friction (beams in *CONTACT_AUTOMATIC_GENERAL)

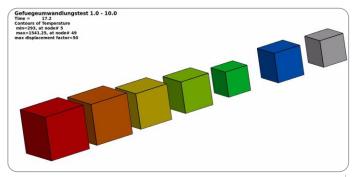
Add *CONTACT_TIED_SHELL_EDGE_TO_SOLID to transmit shell or beam moments into solids using force pairs

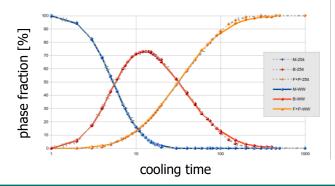

Material models

Generalized damage model

- New keyword *MAT_ADD_GENERALIZED_DAMAGE (MAGD)
 - General damage model as add-on for other material models
 - Intention: non-isotropic damage as in <u>aluminum extrusions</u>, ...
 - Up to 3 history variables as damage driving quantities
 - Very flexible due to input via *DEFINE_FUNCTIONs

 D_{12} Γ*D*11 0 D_{14} 0 σ_{117} $[\sigma_{11}]$ 1 D21 D_{22} 0 D_{24} 0 σ_{22} 0 0 D_{33} 0 0 0 D_{42} 0 D_{44} 0 σ_{12} D_{41} 0 $\tilde{\sigma}_{12}$ 0 0 σ_{23} 0 D_{55} 0 $1\tilde{\sigma}_{23}$ σ_{31} 0 0 0 0

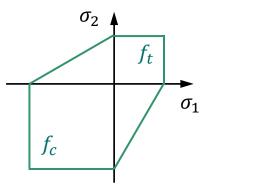


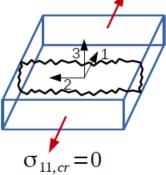


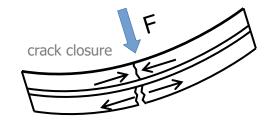
General phase change material

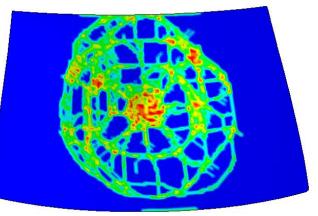
New material model *MAT_GENERALIZED_PHASE_CHANGE or *MAT_254

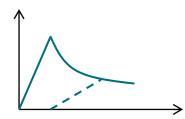
- Very general material implemented to capture micro-structure evolution in welding and heat treatment
- Up to 24 individual phases
- For any of the possible phase transformation user can choose from a list of generic phase change mechanisms (e.g. Leblond, JMAK, Koistinen-Marburger, Kirkaldy, ...)
- Parameters for transformation law directly given in tables
- Additional features
 - Transformation induced strains
 - Transformation induced plasticity (TRIP)
 - Temperature and strain rate dependent plasticity
- Ongoing development

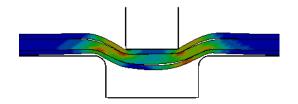


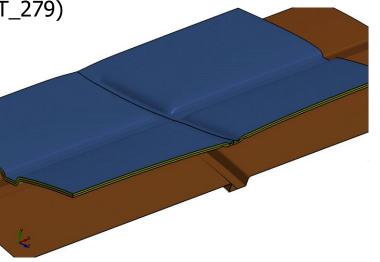



Glass model


- New material *MAT_GLASS (*MAT_280)
 - Material model for fracture of (laminated) safety glass
 - Brittle smeared fixed crack model for shell elements (plane stress)
 - Failure criteria: Rankine, Mohr-Coulomb, or Drucker-Prager
 - Incorporates up to 2 cracks, simultaneous failure over thickness, crack closure effect (no element deletion)

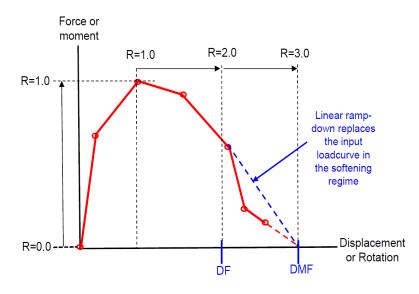






Paperboard modeling

- *MAT_PAPER or *MAT_274 already available in R7.1.3
 - Orthotropic elastoplastic model for shell and solid elements
 - For creasing simulation with delamination of individual plies
- New cohesive model *MAT_COHESIVE_PAPER (*MAT_279)
 - For modeling delamination in conjunction with *MAT_PAPER and shells
 - In-plane and out-of-plane models uncoupled
 - Normal compression nonlinearly elastic
 - Normal tension and tangential traction given by elastoplastic traction-separation law:


Material model for self-piercing rivets

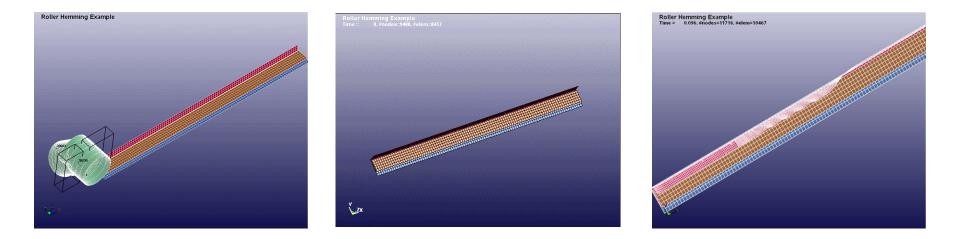
Keyword is *MAT_SPR_JLR or *MAT_211

- Already available since R7, now stable and extensively documented in User's Manual of R9
- SPR discretized as hexahedron ELFORM=1 but uses separate unique element formulation
- Covers several special features suitable for SPR (head-tail distinction, axial-shear-bending, non-linear force-displacement, softening, ...)

Comprehensive output capabilities

More material enhancements

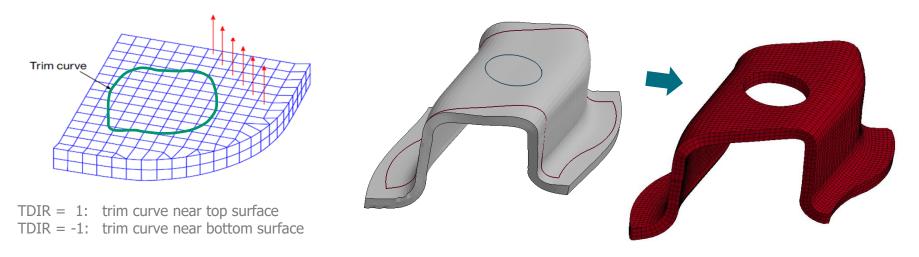
- New keyword *DEFINE_MATERIAL_HISTORIES for organizing history outputs
- Modified *MAT_FABRIC FORM=24 so that Poisson's effects occur in tension only
- Add thick shell support for the **STOCHASTIC** option of materials 10, 15, 24, 81, and 98
- Added support for ***MAT_BRITTLE_DAMAGE** for solid element types 3, 4, 15, 18, and 23
- Add implicit iteration abort flag "reject" to user-defined materials
- Several improvements for **DIEM**: efficiency, new options, output, ...
- Rate dependent plasticity and strengths for *MAT_261 and *MAT_262
- Add possibility to use *DEFINE_FUNCTION for ***MAT_SPOTWELD**, OPT=-1/0
- Improve performance of GISSMO and *MAT_187
- Add **implicit** capability for materials 120, 121, 157, 181 (2D), 254, 274, 275


Forming applications

Enhanced adaptive box

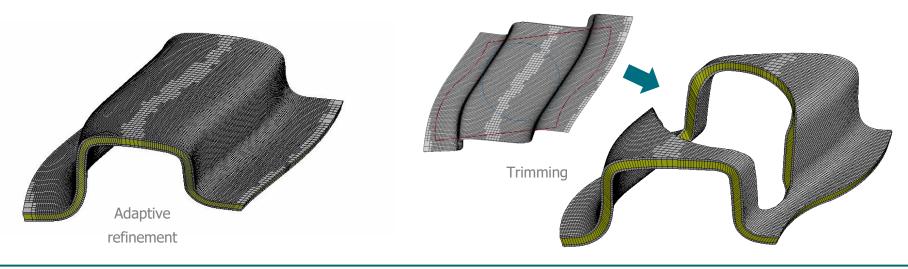
Mesh fission and fusion in a user defined region changing over time

- Moving box to control mesh refinement and coarsening
- New option in *DEFINE_BOX_ADAPTIVE
- Useful in roller hemming and incremental forming



Trimming extensions

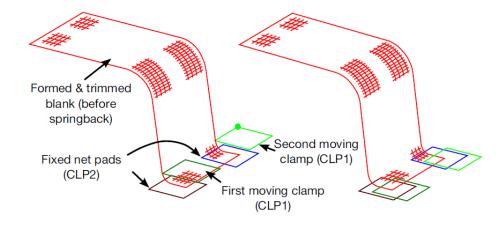
- NEW: 2D and 3D trimming of solids (and laminates)
 - Inputs to trim solid elements are the same as for trimming of shell elements
 - *INCLUDE_TRIM has to be used (new efficient method to include mesh for trimming)
 - Additional input to indicate solid normals: TDIR on *DEFINE_CURVE_TRIM_3D

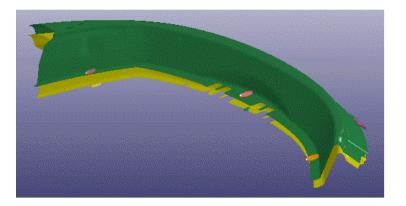


Sandwich sheets

New features to treat shell-solid-shell models in metalforming

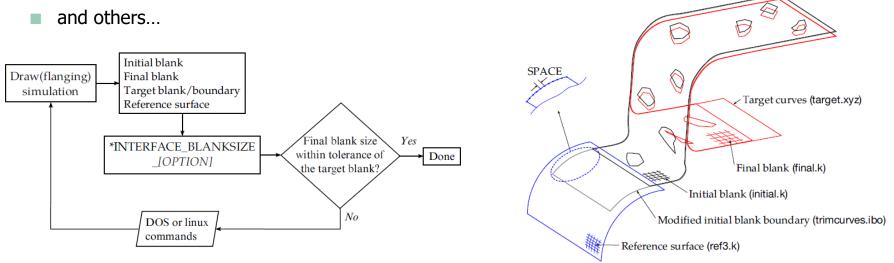
- For sandwich structures such as metal sheets with polymer core layer
- Option IFSAND on *CONTROL_ADAPTIVE for adaptive refinement
- Trimming via *DEFINE_CURVE_TRIM_3D now supports solid elements and sandwiches





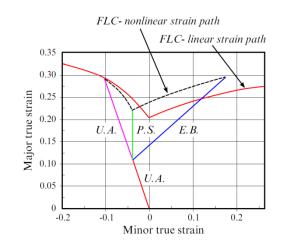
Clamping simulation

- New keywords *DEFINE_FORMING_CLAMP and *DEFINE_FORMING_CONTACT
 - Macros serving as placeholders for the combination of cards needed to model a clamping process
 - Eliminate the need to use auto-position cards between the formed panel and clamps
 - Prescribed motions are automatically (internally) assigned to the clamps
 - Simplifies the contact definition between the panel and the clamps



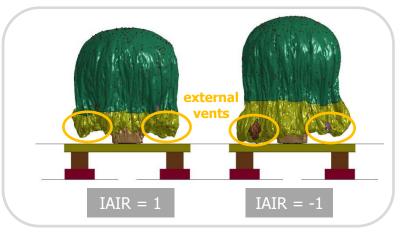
Blank size development

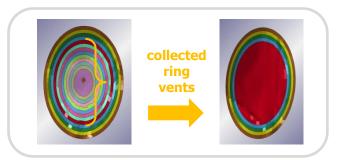
- New features for *INTERFACE_BLANKSIZE_DEVELOPMENT_...
 - SCALE_FACTOR allows user to include or exclude a target curve in the calculation of the initial curve. It also allows user to scale up or down in size of a target curve involved in the calculation.
 - SYMMETRIC_PLANE allows user to define a symmetric plane



More enhancements for forming

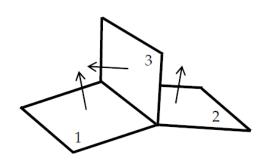
- Add a new keyword *CONTROL_FORMING_BESTFIT
 - This rigidly moves two parts so that they maximally coincide
- Improvements to springback compensations
 - e.g. output of new trimming curve format
- Improvements to *CONTROL_FORMING_AUTOCHECK
 - e.g. output rigid tool mesh in offset position
- Improvements to *CONTROL_FORMING_UNFLANGING
 - e.g. allow non-smooth flange edge
- Add formability index to *MAT_036, *MAT_037, *MAT_226
- Add a new material model *MAT_260 (2 forms)
 - *MAT_260A: "Stoughton non-associated flow"
 - *MAT_260B: "Mohr non-associated flow"

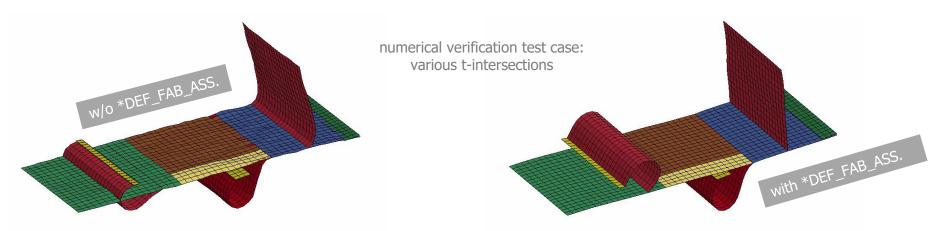



Airbags

CPM for Airbag Modeling

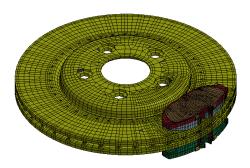
- Several enhancements and improvements
 - New option IAIR=-1 allows external vents to draw in outside air (if p_{bag} < p_{atm})
 - Treat heat convection when chamber is defined
 - Allow IAIR=4 to gradually switch to IAIR=2 to avoid instability
 - Allow using shell to define inflator orifice
 - New feature to collect all ring vents into a single vent in order to correctly treat enhanced venting option
 - Support vent/fabric blockage for CPM and ALE coupled analysis
 - New option in *CONTROL_CPM to allow user defined smoothing of impact forces

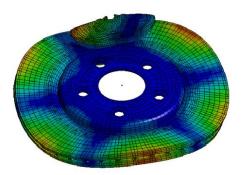




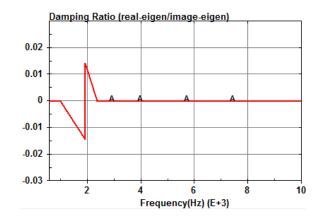
Fabric assemblies

- Proper treatment of bending of t-intersecting fabrics
 - New keyword *DEFINE_FABRIC_ASSEMBLIES
 - List of part sets to treat fabric bending between parts
 - Works with *MAT_FABRIC's optional coating feature (ECOAT, SCOAT, TCOAT)


Implicit analyses

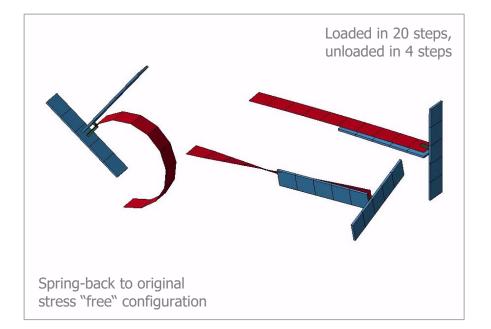

Brake squeal analysis

Rotor dynamics application with *CONTROL_IMPLICIT_ROTATIONAL_DYNAMICS


- Brake squeal noise as a result of friction-induced vibration
- Intermittent eigenvalue analysis: combination of transient analysis and complex eigenvalue analysis (instability detection)
- Pad-Disk contact (MORTAR) introduces non-symmetry to the stiffness matrix: LCPACK=3 on *CONTROL_IMPLICIT_SOLVER

Disk brake model

Resultant displacements at 2000 Hz



Implicit accuracy

- I Implicit accuracy option IACC=1 on *CONTROL_ACCURACY
 - Larger implicit steps demand for stronger objectivity and higher accuracy
 - Higher accuracy in selected material models
 - Fully iterative plasticity
 - Tightened tolerances
 - Strong objectivity and consistency in selected tied contacts
 - Physical (only ties to DOFs that are "real") bending/torsion whenever applicable
 - Finite rotation
 - Strong objectivity and increased accuracy in selected elements
 - Finite rotation support for hypoelasticity

More enhancements for Implicit

- Nonlinear implicit solver 12 is made default aiming for improved robustness
- Reduce symbolic processing time and cost of numerical factorization in MPP
 - Done by reuse of matrix reordering and prediction of non tied contacts
- Apply improvements to Metis memory requirements used in MPP
- Add coupling of prescribed motion constraints for Modal Dynamics by using constraint modes
- Several enhancements for matrix dumping (MTXDMP)
- Enhancements for implicit-explicit switching
 - e.g. time step adjustements, intermittent eigenvalue analysis, ...
- Add support for *CONSTRAINED_LINEAR for 2D problems
- Bathe composite time integration implemented for increased stability and conservation of energy/momentum, see ALPHA on *CONTROL_IMPLICIT_DYNAMICS

TDYBUR

F

1028

TDYDTH

F

1028

DYBIR

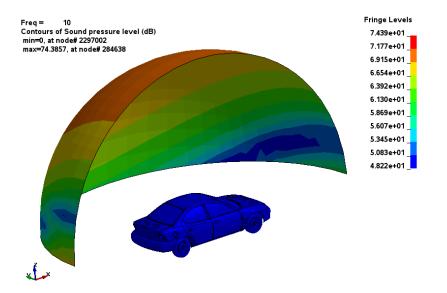
0.0

IRATE

0

ALPH/

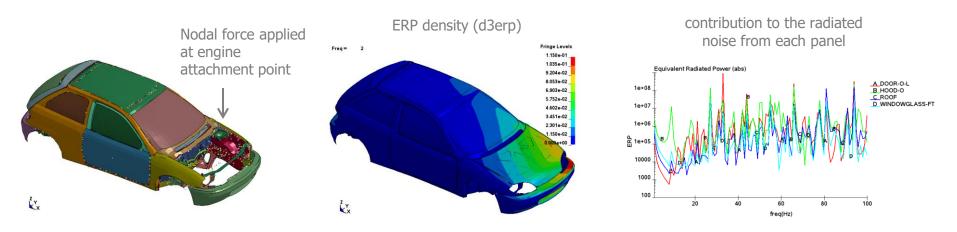
0


Frequency Domain

Acoustic fringe plot

New keyword *FREQUENCY_DOMAIN_ACOUSTIC_FRINGE_PLOT

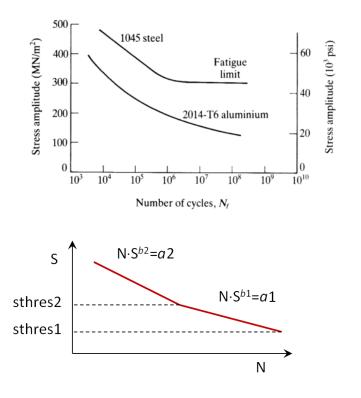
- Define field points for acoustic pressure computation and use D3ACS binary database to visualize the pressure distribution
- Either for existing structure components ... (PART, PART_SET, NODE_SET)
- ... or for automatically generated geometries (plate, sphere)
- Results comprise real part, imaginary part, and absolute value of acoustic pressure as well as sound pressure level (dB)
- Supported by LS-Prepost 4.2 and above



Equivalent Radiated Power (ERP) calculation

New option _ERP for *FREQUENCY_DOMAIN_SSD

- Fast and simplified way to characterize acoustic behavior of vibrating structures
- Gives user a good look at how panels contribute to total noise radiation (valuable tool in early phase of product development)
- Results are saved in binary plot database d3erp, and ASCII xyplot files ERP_abs and ERP_dB


S-N fatigue curves

New options for *MAT_ADD_FATIGUE

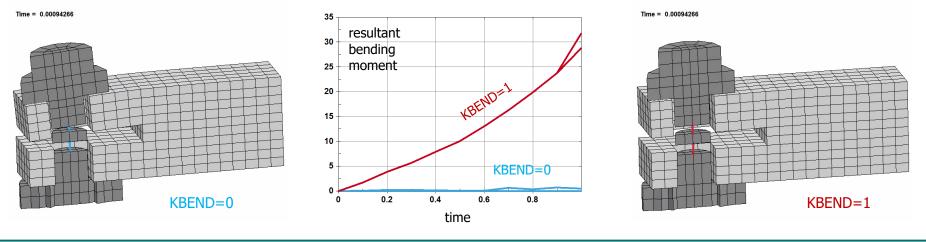
- Implemented multi slope SN curves to be used in random vibration fatigue (*F_D_RANDOM_VIBRATION_FATIGUE) and SSD fatigue (*F_D_SSD_FATIGUE)
- Modular use with other material models
- Either with *DEFINE_CURVE
- Or typical equations:

 $N S^b = a$

$$\log(S) = a - b \log(N)$$

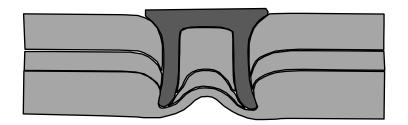
MPP related enhancements

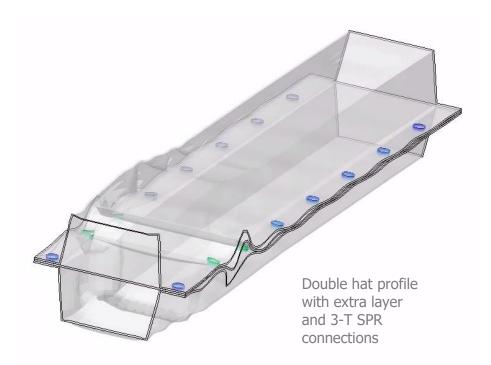
- Output two csv files for user to check MPP performance:
 - load_profile.csv: general load balance
 - cont_profile.csv: contact load balance
- The following decomposition related keywords now have a LOCAL option:
 - *CONTROL_MPP_DECOMPOSITION_PARTS_DISTRIBUTE_LOCAL
 - *CONTROL_MPP_DECOMPOSITION_PARTSET_DISTRIBUTE_LOCAL
 - *CONTROL_MPP_DECOMPOSITION_ARRANGE_PARTS_LOCAL
 - *CONTROL_MPP_DECOMPOSITION_CONTACT_DISTRIBUTE_LOCAL
- memory2=... option on *KEYWORD line
- Allow user to control decomp/distribution of multiple airbags using *CONTROL_MPP_DECOMPOSITION_ARRANGE_PARTS



Miscellaneous

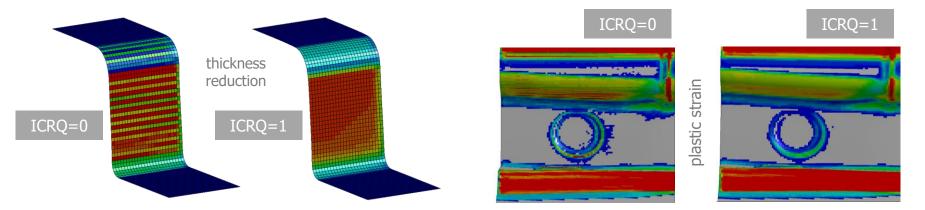
Bending stiffness of pre-stressed bolts


- New option KBEND on *INITIAL_AXIAL_FORCE
 - With KBEND=1, bending stiffness is retained in beam elements that have prescribed axial force
 - Uses appropriate modification at each integration point such that the resultant axial force is correct, but the stress gradient remains unchanged
 - Recommended in general



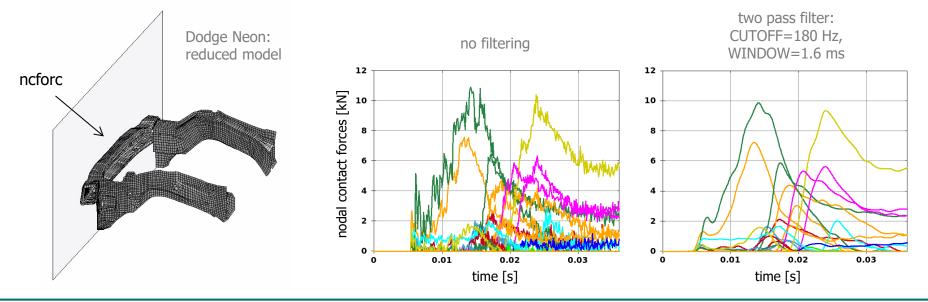
Multi-sheet SPR

- New option for *CONSTRAINED_SPR2
 - Multi-sheet connection for self-piercing rivets
 - Before: only 2 parts (master and slave)
 - Now: up to 4 additional "extra parts"
 - Question about interdependence of connections and reproduction of experimental results remains open



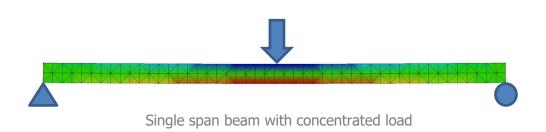
Continuous result quantities

- New option ICRQ on *CONTROL_SHELL
 - Continuous treatment of thickness and plastic strain across element edges for shell element formulations 2, 4, and 16 with max. 9 integration points through the thickness
 - Similar to MAT_NONLOCAL, but only direct neighbors are used for node-based smoothing
 - Reduces alternating weak localizations sometimes observed in <u>metal forming applications</u> when shell elements get stretch-bended over small radii



Results filtering

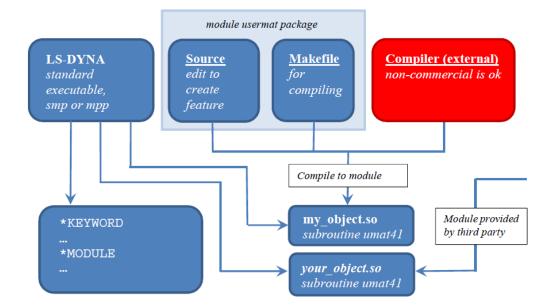
New options for *DATABASE_BINARY_D3PLOT and *DATABASE_NCFORC


- Single pass or double pass Butterworth filtering to smooth the output
- Input parameters are time interval between filter sampling, frequency cut-off, window width

Stress result recovery

- New keyword *DATABASE_RECOVER_NODE
 - Recovers stresses at nodal points by using Zienkiewicz-Zhu's Superconvergent Patch Recovery
 - Available for solid and thin shell elements
 - "x/y/z-Acceleration" in LS-Prepost will be replaced by selected stress measures
 - Generally improves quality of results (accuracy)

Maximum axial stress results analytical: 6.0 element-based: 5.19 (error = 13.5 %) recovered node based: 5.96 (error = 0.7 %)



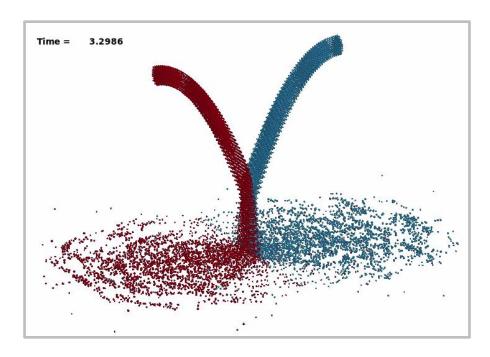
Module Concept for User Defined Features (UDF)

Shared object approach and new keyword *MODULE

- To facilitate working with UDFs in that the content of the usermat package is reduced, replaced by *MODULE
- To enhance flexibility when incorporating features delivered as shared objects by third parties
- *MODULE_PATH: specify multiple paths (directories)
- *MODULE_LOAD: load dynamic library (file name)
- *MODULE_USE: define rules for mapping user subroutines to the model

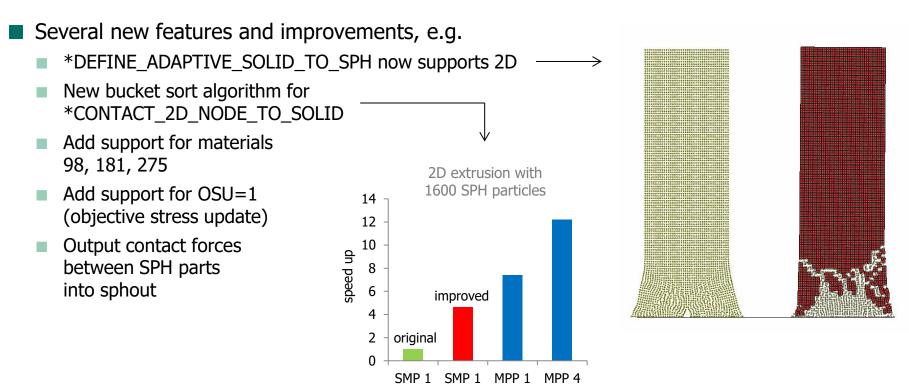
Miscellaneous

- Add ability to specify unique values LCINT for each curve
- Add new input check for quality of rediscretized curves
- Add new option *INTERFACE_SPRINGBACK_EXCLUDE to exclude selected portions from the generated dynain file
- Add *NODE_THICKNESS to override usual shell nodal thickness
- Add options MIRROR and POS6N to *DEFINE_TRANSFORMATION
- The DELFR flag in *CONTROL_SHELL has new options for controlling **deletion of elements**
- New option ICOHED of *CONTROL_SOLID to control cohesive element erosion when neighboring (nodewise connected) shell or solid elements fail
- New keyword *CONSTRAINED_RIGID_BODY_INSERT for modeling "die inserts"
- Add **Rayleigh damping** (*DAMPING_PART_STIFFNESS) for thick shell formulations 1, 2, 6

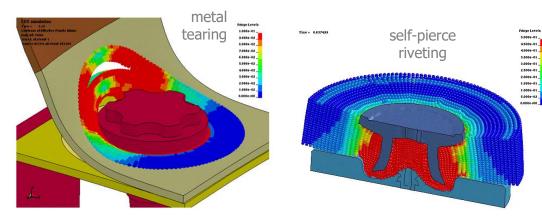

Meshfree methods

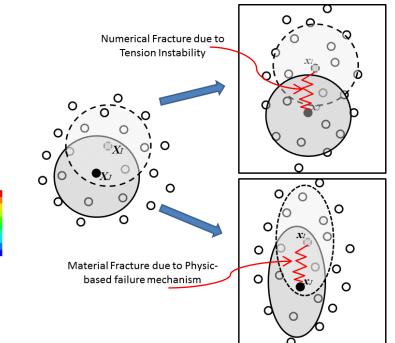
SPH particles injection

New keyword *DEFINE_SPH_INJECTION


- Injection of SPH elements automatic generation of SPH particles
- Multiple injection planes
- User defined injection speed & area
- Birth and death times
- e.g. for filling simulations

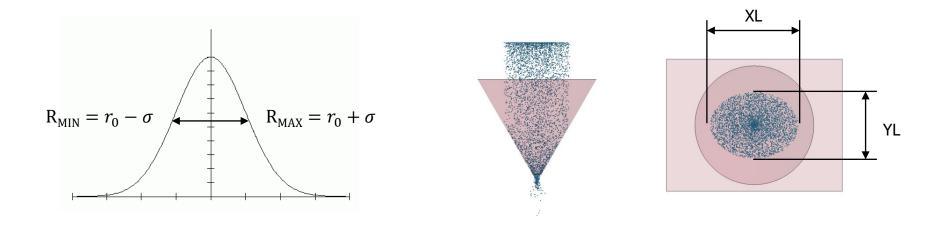
More SPH enhancements





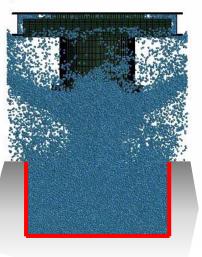
Smoothed Particle Galerkin (SPG)

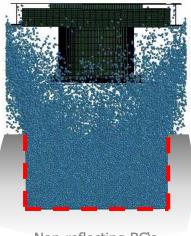
- Improved physical material fracture
 - Related keyword is *SECTION_SOLID_SPG
 - The dilation parameters of SPG Eulerian kernel are automatically adjusted according to the local material deformation to prevent tensile instability



Discrete Elements (DEM): injection

- New options for *DEFINE_DE_INJECTION
 - Gauss distribution of newly generated particles
 - Option _ELLIPSE to define an elliptical injection region




DEM: non-reflecting boundaries

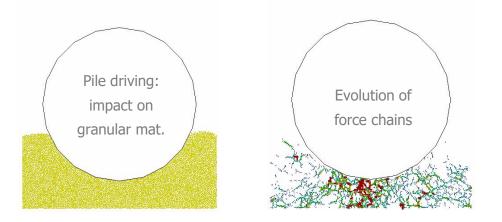
New keyword *BOUNDARY_DE_NON_REFLECTING

- Non-reflecting boundary conditions for discrete element spheres
- Used on the exterior boundaries of an analysis model of an infinite domain, such as a half-space
- Prevents artificial stress wave reflections generated at the model boundaries from reentering the model and contaminating the results
- Example: soil buried explosion ———>

LS-DYNA keyword deck by LS-PrePost Time = 1.74e+05

Fixed BC's

Non-reflecting BC's

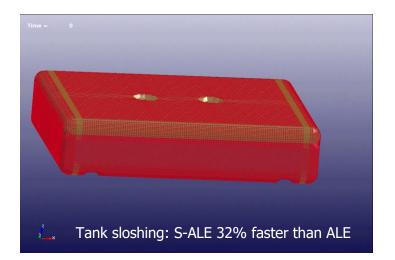


DEM: output enhancements

New result quantities for binary and ascii databases

- Stress, force, pressure, density, force chain, and damage to d3plot
- Porosity, void ratio, stress, pressure, and density to demtrh (*DATABASE_TRACER_DE)
- Corresponding values are evaluated for representative volume element (RVE) defined by DE tracer

"A force chain consists of a set of particles within a compressed granular material that are held together and jammed into place by a network of mutual compressive forces"


ALE / S-ALE

Structured ALE solver (S-ALE)

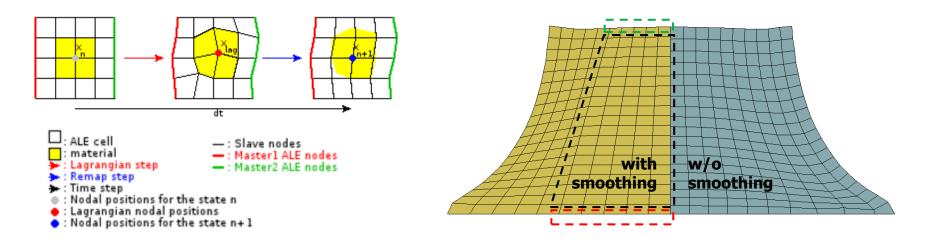
Newly implemented scheme for Arbitrary Lagrangian Eulerian method

- Same theory: advection (remapping), interface reconstruction, FSI coupling to Lagrange structure
- Different Implementation: new automated mesh generation, much more compact solver, time saving in searching and sorting, stable and user-friendly
- Structured ALE mesh automatically generated by *ALE_STRUCTURED_MESH
- SMP, MPP, MPP-Hybrid supported: Redesigned algorithm enabled SMP parallelization Enhancement on MPP efficiency
- Documents, Tutorials, Examples on http://ftp.lstc.com/anonymous/outgoing/hao/sale

Structured ALE solver (S-ALE)

Newly implemented scheme for Arbitrary Lagrangian Eulerian method

Applications: AWG/Orion problem (left) and oblique long rod penetration (right)

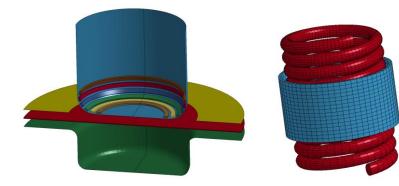


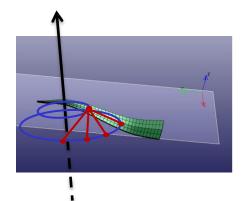
ALE interpolation smoothing

New keyword *ALE_SMOOTHING for higher mesh quality

- Smoothing constraint keeps ALE slave nodes at their initial parametric locations between other ALE nodes. If these nodes are not ALE nodes, the slave node has to follow their motion.
- Supported for ALE solids, ALE shells, and ALE beams

STC

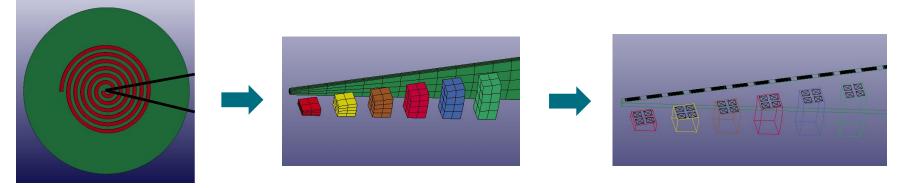

Electromagnetics



Electromagnetics: 2D axisymmetric solver

Motivation and Overview

- Many EM models are (quasi) axisymmetric: geometries have cylindrical invariance (coils, field shapers, ...)
- Introduction of EM 2D axisymmetric solver to save computation time
- EM 2D coupled with mechanics and thermal 3D
- User needs to provide a 3D mesh with rotational invariance
- Coupled with 3D mechanics and thermal, hence all the 3D features of LS-DYNA are available
- EM solved by combined FEM + BEM (as in 3D)
- The simulation can be done on a slice of the full 360°, with suitable mechanical and thermal boundary conditions



2D axisymmetric EM solver

How to set up a 2D axisymmetric case

New keywords *EM_2DAXI, *EM_CIRCUIT_CONNECT, *EM_ROTATION_AXIS

Slice of the full 360° mesh

Define mechanical/thermal boundary conditions and electromagnetic properties

2D axisymmetric EM solver

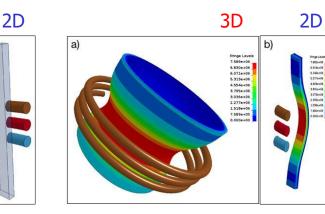
7.682++06

6.145e+06

5.3778+06

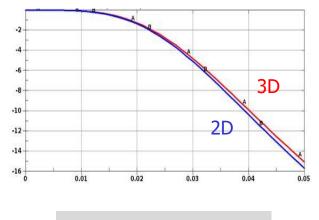
4.605e+05

3.842++0


3.073++06

. 305++

- Comparison with 3-dimensional EM solver
 - Forming of a tube with a helix coil
 - 2D much faster, but same accuracy


b)

3D

Current density distribution

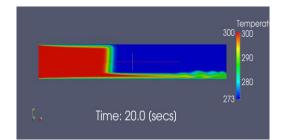
Max. displacement vs time

Computation time 3D: 2 hours on 24 cores 2D: 5 minutes on 1 core

Setup for ring expansion

a)




CFD & FSI

Flow in Porous Media

- New features for porous media simulations
 - Choose between anisotropic Navier-Stokes model and Darcy-Forcheimer model as porous media solver via *ICFD CONTROL SOLVE
 - Added new porous media models for *ICFD_MODEL_POROUS, e.g. depending on anisotropy and permeability

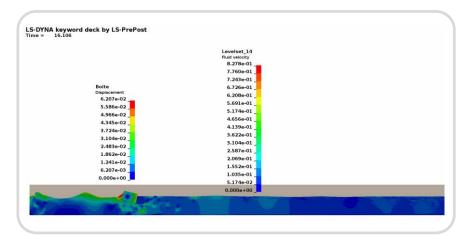
Heat transfer in a hybrid channel

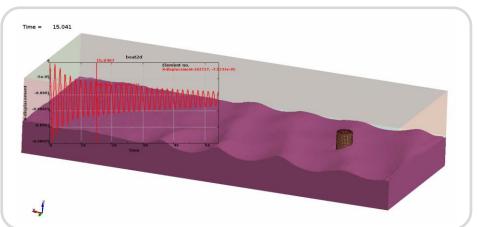
Mold filling analysis

Velocity

Coupling with Discrete Elements

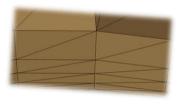
- New keyword *ICFD_CONTROL_DEM_COUPLING
 - One-way or two-way coupling between the fluid and the solid particles
 - Allows wide range of applications that include erosion, fracture and particle interaction
 - Example: Water management, rain simulation





Free surface wave generation

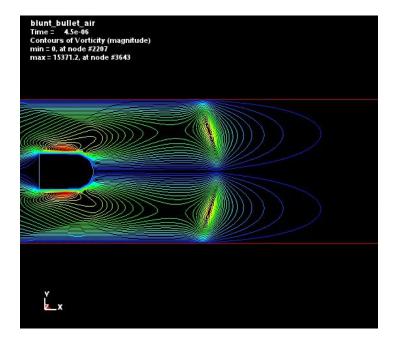
- New inflow boundary condition for wave generation
 - With new keyword *ICFD_BOUNDARY_FSWAVE
 - 1st order Stokes waves with free surface
 - Definition of wave amplitude, wave length, and wave incidence angle



More CFD enhancements

- Added new features for *ICFD_CONTROL_TURBULENCE
 - e.g. new turbulence sub-models (Realizable k-epsilon, Standard Wilcox 98/06, SST Menter 2003)
- New keyword *MESH_BL
 - Define a boundary-layer mesh as a refinement on the volume mesh
 - Constructed by subdividing elements near the surface
- New keyword *ICFD_MODEL_NONNEWT
 - Added a few models for non newtonian materials and temperature dependant viscosity, i.a. power law, Carreau, Cross, Herschel-Bulkley, Sutherland, ...
- New option _VOL for *ICFD_DATABASE_DRAG
 - For computing pressure forces on volumes ID (useful for forces in porous domains), output in icfdragivol.dat and icfdragivol.#VID.dat

Compressible CFD Solver (CESE)


- New energy conservative conjugate heat transfer method
 - Standard conjugate-heat transfer (CHT) methods for compressible flows do not conserve energy, this leads to time-dependent errors in such simulations.
 - A class of new energy-conservative conjugate-heat transfer (CHT) methods for compressible flows has been developed recently (Radenac et al. 2014).
 - Now implemented in 3 different sets:
 - 1) Fixed mesh (both structure and fluid) CESE Navier-Stokes solvers.
 - 2) Moving mesh CESE Navier-Stokes FSI solvers.
 - 3) Immersed boundary method (IBM) Navier-Stokes FSI solvers
 - Unique features include:
 - A unified treatment of space and time
 - The introduction of the conservation element and the solution element as a vehicle for enforcing space-time flux conservation, locally and globally.
 - A novel shock capturing strategy without a Riemann solver.
 - Unlike conventional schemes, flow variables and their derivatives are solved simultaneously.

Compressible CFD Solver (CESE)

- New energy conservative conjugate heat transfer method
 - Advantages
 - Permits CESE to maintain its energy conservation property
 - Efficient: the boundary condition remains local
 - Robust: fluid and structure solutions advance independently, with the heat flux being accumulated to pass to the structural thermal solver
- Example: 2D Blunt bullet problem
 Fluid vorticity

First stable release of R9

Bug fixes

- A wide range of code corrections, inter alia,
 - Correct calculation of wrap angle in seatbelt retractor
 - Fixed thick shell forms 3 and 5 when used in implicit solutions with non-isotropic materials
- Fix possible issue related to constrained contacts in MPP implicit not initializing properly
- Fixed stress initialization (*INITIAL_STRESS_SECTION) for type 13 tetrahedral elements
- Fix for the combination of type 13 tet elements and *INITIAL_STRESS_SOLID
- Fixed issues involving *LOAD_THERMAL_D3PLOT
- Fixed the TRUE_T option on *MAT_100 and *MAT_100_DA
- Correct/improve material tangent for *MAT_181 with PR>0 (foam option)
- Fix for D3PLOT output of very large data sets in single precision
- Fixes for writing and reading of dynain data in LSDA format
- Fix thick shells stress/strain output to dynain
- Fix a bug that occurs when *DEFINE_BOX is included by *INCLUDE_TRANSFORM

... find more in release notes:

http://www.dynasupport.com/news/ ls-dyna-r9.0.1-r9.109912-released

. . .

Conclusion: LS-DYNA R9.0.1

Newest release contains variety of new features
 Recommended for multiphysics and implicit analyses or if new options are needed

R9 Keyword User's Manual can be downloaded from www.dynamore.de/en/downloads/manuals