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Tim Rzesnitzek, Heiner Müllerschön, Frank Günther, Michal Wozniak: Two-Stage Stochastic and Deterministic Optimization 1



➣➣ ➠➠ ➹✖

Outline

Motivation and Introduction

Stage I: Stochastic Optimization

• Generic Monte Carlo

• Latin Hypercube in LS-OPT

Stage II: Analytic (Deterministic) Optimization

• Identifying Relevant Variables for Analytic Optimization

. Variable Screening in LS-OPT (ANOVA)

Example: Van Component Model for Crash

• Problem Description

• Stage I

• Stage II

Conclusions and Outlook
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Why Optimization?

Modern Commercial vans have to meet high demands with
respect to active and passive safety.

Passive safety considerations play an important role in the design of the Vaneo,
Vito, and Sprinter van models at DaimlerChrysler Commercial Vehicles.

Also extremely important for customer value:

• low purchase and maintenance cost,

• good fuel economy,

• high payload.

Passive safety requirements can lead to design requirements at odds with
economy and payload! It is essential to analyze many different designs and
find the best solution possible.

We need optimization procedures capable of finding an optimal
solution for full vehicle crash simulations
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Why Two Stages?

Stochastic Optimization

• Advantages/Disadvantages:

+ Very robust for highly nonlinear problems; works surprisingly well
+ number of simulations is independent of total number of design variables (it does

depend on number of relevant design variables!)
– brute-force approach, not very efficient

• Suitable when initial design is far from optimal design, and relevance of design variables
is unknown.

Analytic Optimization

• Advantages/Disadvantages:

+ Fast convergence, small number of simulations
– May be misled by local optimum
– Number of simulations depends on total number of design variables, whether

relevant or not

• Suitable when initial design is close to optimal solution, and relevance of design variables
is known.
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Introduction

Purpose of this presentation:

• propose a two-stage optimization process for highly nonlinear automotive crash problems

Stage I: preliminary stochastic optimization with large number of design
variables.

• Obtain a (nearly) optimal solution,

• Use results to identify a small set of design variables relevant to the optimization problem.

Stage II, analytic optimization

• Use only relevant design variables of stage I

• Use optimum result of the preceding stochastic optimization as starting point

Procedure is demonstrated using a van-component model used for crash
calculations.

LS-OPT is used due to its ability to perform both stochastic (Latin Hypercube)
and analytic optimization.
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Monte Carlo

Stochastic optimization can be performed using a generic Monte Carlo method

• Each design variable is confined within its individual, user-defined range

• Vector of input values is determined randomly within bounds for each variable

For the construction of a Monte Carlo design, experiments that violate a
constraint are discarded when the set of design points is created. The generation
of random values for a single experiment is repeated until a design is found that
satisfies the constraint.
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Latin Hypercube
The Latin Hypercube method
provided by LS-OPT is a random
experimental design process.
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• The range of each design variable
is subdivided into n equal intervals,
where n is the number of
experiments (in this example,
5).

• A set of input variables is then
determined for each experiment by
randomly selecting a value in one of
the n sub-ranges for each variable.

• Each sub-range may only be used in
a single experiment, thus ensuring
that the entire design space is
covered.

In LS-OPT, points that violate a constraint are moved to the boundary of the
admissible space. Thus, a large number of designs may lie on the boundary of
the admissible region.
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Monte Carlo and Latin Hypercube
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The designs generated by LS-OPT often lie on the bounds of the admissible
region, which results in an uneven distribution of the set of design points.

The design points created by the Monte Carlo algorithm are distributed more
evenly for each variable.
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Advance Evaluation of Constraints

Advantages of advance evaluation
of constraints in a Monte Carlo
optimization:

• Without constraints, a simulation
would be carried out for each of the
design points plotted in the diagram.

• By defining a constraint that can be
evaluated in advance, experiments
that are uninteresting or irrelevant
can be rejected in advance.

• Thus, the number of simulations can
be reduced.

Example: mass constraints
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• Frequently, an objective function
can be computed in advance, but
there are non-trivial constraints.
Again, irrelevant experiments can be
eliminated.

• E.g. mass as objective function,
measure for structural integrity as
constraint.
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Variable Screening in LS-OPT (ANOVA)
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LS-OPT provides the capability
of performing a significance
test for each variable in order
to remove those coefficients or
variables which have a small
contribution to the design
model.

For each response, the variance
of each variable with respect
to that response is tracked and
tested for significance using the
partial F-test.

A 90% confidence level is
used to quantify the uncertainty
and the variables are ranked
based on this level.
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Van Component Model

Components of assembly:

• first cross rail

• front part of one longitudinal frame rail.

• energy absorbing box between first cross rail and longitudinal frame rail

• parts of the wheelhouse; closing panel of frame rail
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Van Component Model

The assembly is connected to the floor panel of the body in white at the back part closing panel.
In the simulations, the assembly is fixed in y and z at that location. The assembly is displaced
in x at a constant velocity and impacts a rigid wall.

For simulation purposes, only half of the frame is represented (since geometry and loads are
symmetric to the y-z plane) and the first cross member is cut off in the y-z plane. Therefore,
translation in y and rotation about the x and z axis have to be fixed in that plane.
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Optimization Problem

Design variables:
• Sheet thicknesses of 15 parts
• geometry of a rib in the frame rail

. design variables depth t, x-location xmin, xmax, z-location zmin, zmax

. Perl program preprocesses LS-DYNA input file to generate rib

• Total of 20 design variables

Objective: Maximize the ratio of the internal energyEmax and the massM of the components:

EM =
Emax

1000M
−→ maxEM .

Constraints:
• Mass constraint: 0.895 < M < 1.022

• peak of frame rail force: maxRWFORC = 1.25

. time history (ASCII-file RWFORC) is filtered using SAE 180
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Example Model: Monte Carlo Distribution

First iteration:
• 60 different designs are evaluated
• Variable sets are generated by a Perl program using a module for generating random

values
• Total mass of component model is checked directly, designs that violate constraints are

rejected a priori
• Repeat this until 60 feasible designs are available

Second iteration:
• Choose three runs with maximum objectives EM and with a frame rail force less than

1.5 as starting values for 15 additional runs each
• Thus, three sets of 15 variables are randomized with these starting values as centerpoints
• Repeat this for the three best designs of the previous 45 runs with 3 × 15 = 45 more

runs

Total number of simulations: 1× 60 + 3× 45 + 3× 45 = 150.
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Example Model: Latin Hypercube Distribution

Latin Hypercube designs provided by LS-OPT.

LS-OPT generates an initial 1000 Latin Hypercube points (sets of variables). Points that
violate the mass constraint are moved automatically into the feasible mass region.

Out of these 1000 feasible points, a sub-set of 60 points is selected by applying the D-Optimality
criterion in LS-OPT.

Points chosen by the D-Optimality criterion generally display good capabilities with respect to
linear regression.

In the same manner, 30 more points are generated around the best design out of the first 60
runs.

Total number of simulations: 1× 60 + 1× 30 = 90.
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Example Model: ANOVA Analysis

ANOVA analysis:
• Use first 60 runs of the Latin Hypercube

Distribution
• LS-OPT ranks variables by using the

bound of the 90% confidence interval that
is closest to zero as the ranking criterion

Analytic Optimization, Response Surface
Method in LS-OPT:
• Choose four most significant variables
t1134, t1139, t1210 and t1221

• Initial design: Best run of the 150 Monte

Carlo simulations.
• Values of the remaining 16 variables are

also taken from the optimal Monte Carlo

run and are kept constant.

Approximating Response ’E_M’ using 60 points
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Linear Function Approximation:
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Mean response value           =     0.8890
RMS error                     =     0.2238 (12.33%)
Maximum Residual              =     0.4611 (25.40%)
Average Error                 =     0.1824 (10.05%)
Square Root PRESS Residual    =     0.3687 (20.31%)
Variance                      =     0.0751
R^2                           =     0.8524
R^2 (adjusted)                =     0.8524
R^2 (prediction)              =     0.5995

Individual regression coefficients: confidence intervals
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

      |  Coeff.  | Confidence Int.(90%)| Confidence Int.(95%) |% Confidence
 Coeff|          |−−−−−−−−−−−−−−−−−−−−−|−−−−−−−−−−−−−−−−−−−−−−| not        
      |  Value   |  Lower   |   Upper  |  Lower   |   Upper   | zero       
 −−−−−|−−−−−−−−−−|−−−−−−−−−−|−−−−−−−−−−|−−−−−−−−−−|−−−−−−−−−−−|−−−−−−
 t1134|      1.58|     1.255|     1.906|      1.19|      1.971|   100
 t1139|     1.015|    0.7089|     1.321|    0.6476|      1.382|   100
 t1140|   −0.6216|   −0.9263|   −0.3169|   −0.9874|    −0.2559|   100
 t1144|   −0.2674|   −0.6063|   0.07145|   −0.6743|     0.1394|    80
 t1210|    −1.055|    −1.416|   −0.6931|    −1.489|    −0.6206|   100
 t1211|   −0.4619|   −0.8002|   −0.1236|    −0.868|   −0.05573|    97
 t1220|   −0.5574|   −0.8209|    −0.294|   −0.8737|    −0.2411|   100
 t1221|   −0.9985|    −1.337|   −0.6604|    −1.404|    −0.5926|   100
 t1222|    0.3766|   0.01415|     0.739|  −0.05852|     0.8117|    91
 t1223|   −0.2613|   −0.6392|    0.1165|   −0.7149|     0.1923|    74
 t1224|   −0.1445|   −0.4433|    0.1543|   −0.5032|     0.2142|    57
 t1410|   −0.0268|   −0.3932|    0.3396|   −0.4666|      0.413|    10
 t1411|  −0.05109|   −0.3883|    0.2861|   −0.4559|     0.3537|    20
 t1412|    −0.544|   −0.8206|   −0.2674|    −0.876|     −0.212|   100
 t1413|   −0.3308|   −0.7064|   0.04484|   −0.7818|     0.1202|    85
 xmin |    0.3381|  −0.06837|    0.7446|   −0.1499|     0.8261|    83
 xmax |   −0.3318|   −0.5868|  −0.07684|    −0.638|   −0.02572|    96
 zmin |    0.2477|  −0.02525|    0.5206|  −0.07996|     0.5753|    86
 zmax |   −0.1905|   −0.5596|    0.1786|   −0.6336|     0.2526|    60
 t    |    0.1564|   −0.1283|    0.4412|   −0.1854|     0.4983|    63
 −−−−−|−−−−−−−−−−|−−−−−−−−−−|−−−−−−−−−−|−−−−−−−−−−|−−−−−−−−−−−|−−−−−−

Ranking of terms based on bound of confidence interval
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

                Coeff|Absolute Value (90%)|10−Scale
                −−−−−|−−−−−−−−−−−−−−−−−−−−|−−−−−−−−
                t1134|             1.255  |   10.0
                t1139|            0.7089  |    5.6
                t1210|            0.6931  |    5.5
                t1221|            0.6604  |    5.3
                t1140|            0.3169  |    2.5
                t1220|             0.294  |    2.3
                t1412|            0.2674  |    2.1
                t1211|            0.1236  |    1.0
                xmax |           0.07684  |    0.6
                t1222|           0.01415  |    0.1
                zmin |      Insignificant |    0.0
                t1413|      Insignificant |    0.0
                xmin |      Insignificant |    0.0
                t1144|      Insignificant |    0.0
                t1223|      Insignificant |    0.0
                t    |      Insignificant |    0.0
                t1224|      Insignificant |    0.0
                zmax |      Insignificant |    0.0
                t1411|      Insignificant |    0.0
                t1410|      Insignificant |    0.0
                −−−−−|−−−−−−−−−−−−−−−−−−−−|−−−−−−−−

Variables kept constant in Stage II

Selected Variables for Stage II
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Example Model: Results

Results of the Monte Carlo and
the Latin Hypercube simulations
of Stage I

Optimum design found by LS-OPT
using the response surface method in
Stage II

We see significant improvement of the
response EM in Stage II

Best Result M.Carlo2

Best Result M.Carlo1

Best Result M.Carlo3
Best Result LatinHyperCube

Result Optimum
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RWFORC=1.25 (constraint)

Result Initial Configuration
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Conclusions

We have shown a two-stage optimization process:
• Stage I

. stochastic optimization, large number of design variables

• Stage II

. Small number of relevant design variables

. Linear response surface in LS-OPT

. Start from optimal design of stochastic optimization

Mass constraint is enforced a priori to avoid unnecessary simulations.

Variable screening using the ANOVA (ANalysis Of VAriance) feature in LS-OPT: insignificant
variables are frozen in Stage II

Initial design of the analytic optimization (Stage II): Best design of Monte Carlo simulations.

A significant additional improvement of the Energy/Mass ratio by analytic optimization is
observed. In total, an improvement of 32% from the initial configuration (1.205) to the optimum
result of LS-OPT (1.60) is achieved.

Our experiments show Two-Stage Optimization to be a viable method for combining the
flexibility of stochastic optimization with the efficiency of analytic optimization. Based on the
results presented here, Two-Stage Optimization seems a promising method for full vehicle crash
problems.
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