Recent Developments on LSTC Barriers Models

S. Bala, D. Bhalsod

Livermore Software Technology Corporation

LSTC BARRIERS 9th LS-DYNA Forum, Bamberg

Suri Bala & Dilip Bhalsod Oct 13, 2003

Tuesday, October 12, 2010

Outline

- Introduction
- Honeycomb Structure and Adhesive Modeling
- Validation
- Integration into Vehicle
- Conclusions

Introduction

- Accurate predictions of vehicle crashworthiness relies heavily on validated systems (Barriers, Dummies, etc) used to evaluate critical vehicle measurements
- Over the last few years, LSTC has been working with several OEM and suppliers with experimental data to help develop validated LS-DYNA Barrier Models for use in Crash Analysis
- This presentation will provide details regarding the development and the current status of LSTC FE Barriers.

LSTC's FE Barrier Family

Tuesday, October 12, 2010

Main areas of Modeling

Honeycomb Structure Modeling

- Cellular structure
- Continuum using solid elements
- Shell Elements
- All LSTC barriers come in "SOLIDS" and "SHELLS" versions with the cost of the 'Shell' barriers roughly 4-20x that of the solids.

Honeycomb Properties - Crush Strength

Crush Strength S(n) = F(n) / A j n=1,2,3

Scenatic Load-Displacement Trace for Honeycomb Certification

Honeycomb Structure - Off-Axis

$$\sigma^{y}(\varphi,\varepsilon^{vol}) = \sigma^{b}(\varphi) + (\cos\varphi)^{2} \sigma^{s}(\varepsilon^{vol}) + (\sin\varphi)^{2} \sigma^{w}(\varepsilon^{vol})$$

Localized Damage

Shear Damage

Tuesday, October 12, 2010

Shear Damage Evolution

Tuesday, October 12, 2010

Importance of Hardening

BumperWithCladding Time = 0

Ľ_×

Shell Modeling of Core

- Physical realistic discretization of honeycomb cellular structure is probably the most realistic method of representation
- Actual cell size modeling may be still far-fetched but with shell thickness and material stiffness modifications, it is possible to capture a cell size that is close to reality and with workable element count
- Using LS-OPT one can easily determine the desired thickness and material yield with a cell size for a given average yield strength

Cell Discretization

neam block sample (150x150x50) Tite = 0

LS-DYNA keyword deck by L3-Prepost Ene = 0

Shell Element Modeling

LS-DYNA keyword deck by LS-Prepost iniforcilorces A trias CONTRACTOR AND ADDRESS OF ADDRESS 8 mixed C quads3 49 D triasdit E nizedskt 30÷ normal_force 20-10-0.004 300.8 800.0 0.01 0.012 0.002 Time

Tuesday, October 12, 2010

Adhesive Modeling

*CONTACT_AUTOMATIC_NODES_TO_SURFACE_TIEBREAK

LS-DYNA keyword deck by LS-Prepost Time = 0

Tuesday, October 12, 2010

Time = 0

TINC - Incremental Displacement in Tiebreaks

LS-DYNA keyword deck by LS-Prepost Time = 0

z_x

LSTC ODB Status Update

- Development based on 16 available OEM Tests
- Both Shell and Solid Version show promising results
- Solid version used to perform LS-OPT/DOE (200+ runs) to study sensitivity of some important variables such as honeycomb shear damage, adhesive failure strength, cladding failure, etc.
- Verification runs made to reduce overall MSError compared to test

Solid Results

Tuesday, October 12, 2010

Shell Results

Tuesday, October 12, 2010

Side Impact Barrier 214 Pole Test

Time = 0

Time =

x Y

21

Side Impact Barrier 214 Wall Test

Time = 0

Time = 0

z x y

214 SIDE IMPACT BARRIER

• Shell version has been validated with 7 additional test cases

Case2 - 0 degree Flat wall

Case3 - Pole impact

Case4 - 15 degree angle

Case5 - 30 degree angle

Case6 - 100 % rocker

Case7 - 50 % rocker

Case8 - 100 % no bumper

• Version2 was released Feb 4th 2010

214 Test Cases 0, Pole, 15,

214 30, Impactor-1, Impactor-la

Tuesday, October 12, 2010

IIHS Pole

Time = 0

Time =

0

ζ-Y κ

Time = 0

Time =

Z Y 0

PDB ECE95 Wall Impact

× Y

ECE Rev 95

Pole Impact Setup

Flat wall Impact Setup

ECE Rev 95 version 2

AEMDBV3.10

- Advanced European Moving Deformable Barrier
- Validated according to Version 3.10

Full Barrier Results

Block Layout

Block Results

Positioning of Barriers

• Recommended method is to use

```
*INCLUDE_TRANSFORM
```

- Honeycomb material coordinate system and cart inertia tensor update was most common problems from users.
- Cart inertia properties now are defined in local coordinate system and the coordinate system is defined using nodes.
- AOPT on mat_modified_honeycomb is also defined using local coordinate system.
- This will now enable user to position the barrier in any pre-processor and replace the nodal coordinates in the barrier.

Contact between vehicle and barrier

- Recommended to isolate barrier and vehicle self contacts
- Define a separate contact between the vehicle and barrier
 *contact_automatic_surface_to_surface.
- Caution: If the vehicle contact is type 13 with 0 for slave side (treat entire system) then the vehicle contact should be define with a part set to include only the vehicle parts

Conclusions

- LSTC is committed to providing the best in quality barrier models for use in crash simulations
- We thank all the OEMs who generously provided their experimental data and worked with us continuously to achieve acceptable correlation
- You can download the latest barriers from

<u>ftp://user:computer@ftp.lstc.com/lstc-</u> <u>barriers</u>