Development, implementation and Validation of 3-D Failure Model for Aluminium 2024 for High Speed Impact Applications

Paul Du Bois, Murat Buyuk, Jeanne He, Steve Kan

NCAC-GWU

9th LS-DYNA Forum October 12-13, 2010 Bamberg, Germany

Introduction

- Part of a research program conducted by FAA William J Hughes Technical Center (NJ)
- material testing performed by OSU
- ballistic testing performed by NASA/GRC
- numerical simulations performed by GWU-NCAC
- involved the implementation in LS-DYNA of a tabulated generalisation of the Johnson-Cook material law with regularisation to accommodate simulation of ductile materials

previously published results in :

•A Generalized, Three Dimensional Definition, Description and Derived Limits of the Triaxial Failure of Metals, Carney, DuBois, Buyuk, Kan, Earth&Sky, march 2008

FAA engine safety working group

9th LS-DYNA Forum, 12-13/10 2010

Background : blade-out events

- Aircraft Safety depends upon sound engine containment designs, and upon realistic evaluation of the damage from uncontained engine debris.
- The program addresses the modeling of impact between the blades and case, or between the fragments and non-engine aircraft structure
- The program has developed an extensive material test database and has modeled many different tests to evaluate the overall applicability of a single material model to the larger overall problem

Fan blades of Trent

Mandatory full scale engine containment test

Failure Mode Transition with Material Thickness and Projectile Energy

Pre MAT224 analysis requires adjusting the material failure model to the design condition

DOT/FAA/AR-07/26 Ballistic testing and simulation

DOT/FAA/AR-08/36 Ballistic Limit Data

DOT/FAA/AR-08/36 Ballistic Limit Data

Part 1 : OVERVIEW OF MAT_224

Development of MAT_224 in LS-DYNA

• The Johnson-Cook material law is based on a multiplicative decomposition of strain hardening, strain rate hardening and thermal softening :

$$\sigma_{_{y}} = ig(a + barepsilon_{_{p}}^{^{n}} ig) ig(1 + c \ln ig(rac{\dot{arepsilon}}{\dot{arepsilon}_{_{0}}} ig) ig) ig(1 - ig(rac{T - T_{_{R}}}{T_{_{m}} - T_{_{R}}} ig)^{^{m}} ig)$$

• A similar formulation is used for the plastic failure strain in function of state of stress (triaxiality), temperature and strain rate

$$\varepsilon_{_{pf}} = \left(D_{_1} + D_{_2}e^{D_3\frac{p}{\sigma_{vm}}}\right) \left(1 + D_4\ln\left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_0}\right)\right) \left(1 + D_5\left(\frac{T - T_{_R}}{T_{_m} - T_{_R}}\right)\right)$$

•A damage variable with scalar accumulation is used as failure criterion :

$$d = \int rac{darepsilon_p}{arepsilon_{_{pf}}} \leq 1$$

- Exactly the same approach is followed in MAT_224
- analytical formulations are replaced by tabulated generalisation

Development of MAT_224 in LS-DYNA

- regularisation of the displacement at failure is added to account for the inevitable mesh-dependency of the simulations after necking in ductile materials
- started development in november 2006
- production version available in Is971-R4.2
- current presentation is based on implementation in ls971-R5.0
- developed on the basis of MAT_024 with VP=1
- available for fully and underintegrated shell and solid elements
- full keyword code : *MAT_TABULATED_JOHNSON_COOK

MAT_224 : material law

- k1 : table of rate dependent isothermal hardening curves or load curve defining quasistatic hardening curve
- kt : table of temperature dependent quasistatic hardening curves

$$egin{aligned} \sigma_{_y} &= k 1ig(arepsilon_{_p}, \dot{arepsilon}_{_p}ig) \cdot k tig(arepsilon_{_p}, Tig) \ arepsilon_{_p} &= \int \dot{arepsilon}_{_p} \ eta & arepsilon \ eta & arepsilon \end{aligned}$$

$$T = T_{\scriptscriptstyle R} + rac{
ho}{C_{\scriptscriptstyle p}
ho}\int\sigma_{\scriptscriptstyle y}\dot{arepsilon}_{\scriptscriptstyle p}$$

MAT_224 : failure model

- f: table of load curves giving failure plastic strain in function of triaxiality at constant Lode angle
- g : scaling function for rate effects
- **h** : scaling function for temperature
- i : regularisation curve

$$arepsilon_{_{pf}} \,=\, f\!\left(rac{p}{\sigma_{_{vm}}}
ight)\!g\left(\,\dot{arepsilon}_{_{p}}\,
ight)\!h\left(\,T\,\,
ight)i\left(\,l_{_{c}}\,
ight)$$

9th LS-DYNA Forum, 12-13/10 2010

MAT_224 : material law : basic example

⁹th LS-DYNA Forum, 12-13/10 2010

MAT_224 : failure law : basic example

9th LS-DYNA Forum, 12-13/10 2010

Differences in the Elongation Due to Mesh Dependency; Even if Characterized Failure Strain is Used

Regularized Failure Strain According to the Mesh Size

MAT_224 : Verification Process

extensive verification needs to be performed

some elementary single solid element tests are shown next

•resuls must be compared to reliably implemented material laws in LS-DYNA : natural choices are MAT_024 and MAT_015

• in particular verify the influence of thermal softening and stress triaxiality

Once and for all : the history variables :

HV	Shell	Solid
1	Plastic strain rate	
5		Plastic strain rate
7	Plastic work	
8	Plastic strain/failure strain	Plastic failure strain
9	Element size	triaxiality
10	temperature	Lode angle
11	Plastic failure strain	Plastic work
12	Triaxiality	Plastic strain/failure strain
13		Element size
14		temperature

Part 2 :

FAILURE MODEL DESCRIPTION DEPENDENCY UPON THE STATE-OF-STRESS

Single Finite Elements Under Different States-of-Stress

3 very different load paths all have a triaxiality = -1/3 A second parameter is needed to distinguish between them The Lode angle is a good practical choice since it is always comprised between -1 and 1

Representation of the state of stress :

In this diagram the horizontal line comprises all possible states of plane stress

NASA Ballistic Tests

NASA Ballistic Tests

Carney K.S., DuBois P.A., Buyuk M., Kan S., "A generalized, three dimensional definition, description and derived limits of the triaxial failure of metals", *Journal*

MAT_224 : failure criterion

material tests for failure criterion

Plane stress Failure criterion for Aluminium 2024

Comparison to JC failure criteria

In fact the JC criterion usually cannot handle petaling (tensile) and plugging (shear) failure simultaneously

Example of AL2024, the physical failure criterion is more complex then JC

Basic splines for the 3D failure model

3-D Failure criterion for Aluminium 2024

Eta

Part 3 :

DYNAMIC PUNCH TESTS BALLISTIC TESTS

Dynamic punch testing on the SHB

- Controlled dynamic testing is performed on a SHB to examine failure of Aluminium 2024 before assessing the ballistic testing by NASA
- SHB at OSU is used for dynamic punch testing at 20 m/s using different punch shapes and a circular sample with D=14.56 mm and t=1.456 mm (10%)
- 3 different punch shapes were selected
- these tests allow validation of the failure criteria determined from quasistatic testing on samples with different shapes
- also failure criterion can be extended to states of stress lying on the compressive meridian
- crack patterns corresponding to different failure modes (petaling, plugging and combined) can be examined
- stop collars were used to arrest the impactor bar at predetermined values of the displacement allowing to study the crack growth in the samples

preliminary simulation results : punch 1

top view

0th I C DVNIA Earner 12 12/10 2010

preliminary simulation results : punch 6

10

k

9th LS-DYNA Forum, 12-13/10 2010

4

6

Time * E-5

2

1

0-

Comparison to SHB test results : 1mm displacement

9th LS-DYNA Forum, 12-13/10 2010

Comparison to SHB test results : 1.7mm displacement

circumferential crack at bottom side

Comparison to SHB test results : 2.4mm displacement

radial cracks also appear at the bottom side

9th LS-DYNA Forum, 12-13/10 2010

animated simulation results

Comparison to SHB test results : 2.4mm displacement

radial cracks also appear at the bottom side

Punch #1 - Dynamic

Punch #1

Punch #1 - Static

Punch #4 - Dynamic

Punch #4 - Static

Punch #6 - Dynamic

Punch Side

Punch #6 - Static

NASA Ballistic Tests

0.125" panels

0.5" dia, Ti-6-4, 0.7" long, ~ 9.9 g

0.25" panels

0.5" dia, Ti-6-4, 0.9" long, ~12.8 g

0.5" panels

0.5" dia, A2 tool steel, 1.125" long, ~28 g 0.5" dia, A2 tool steel, 1.5" long, ~37.5 g

Fuselage 'shielding' tests at China Lake

Part 4 : CONCLUSION

Continuation

 further iterations using the material and punch test results to refine the failure model

- simulation of the ballistic tests performed at GRC to assess the current model
- repeat simulations of the UCB ballistic tests
- simulation of impact tests on fuselage panel performed at China Lake
- titanium and inconel will be investigated next

Conclusions

 predictive analysis of failure is desirable for materials used in aeronautical structures

• to achieve maximum flexibility in the numerical models a tabulated and regularized generalisation of the Johnson-Cook material law was implemented in LS-DYNA

- a comprehensive testing program was used to create a material data card for aluminium 2024
- it proved possible to predict the complicate crack pattern in dynamic punch tests

• large numbers of ballistic limit experiments are available for further validation