

Development of Detailed AM50%ile Hybrid III Dummy FE Model

Presented at LS-DYNA Forum, 13 October 2011, Filderstadt (Stuttgart), Germany

TOYOTA MOTOR CORPORATION Tatsuya KOMAMURA

CONTENTS

- 1. Background and Objectives
- 2. Development of Frontal Impact Dummy FE Model
- 3. Model Validation
- 4. Discussion
- 5. Conclusions

1-1. Background

- The dummy's injury measurements are evaluated in FMVSS 208, such as head G, chest deflection and so on.
- FE analysis recently is utilized to predict the dummy responses.
- Miyazaki et al. developed a FE flex impactor model using reverse engineering technique with CT scan measurement.
- Developing a fine dummy FE model with the technique is also expected.

1-2. Objectives

- To develop a Hybrid III AM50^{%ile} dummy model using the reverse engineering technique.
- To examine the kinematics and injury responses by comparing to those from the tests.

2-1. Reverse Engineering

Fine mesh from the geometry data scanned by X ray CT.
Input the experimentally measured material properties and joint stiffness.

2-2. X-ray CT scan

Geometry data is obtained with a physical dummy at 1mm scan pitch by TMC-owned X-ray CT scanner.
Metal and non-metal 2D images are obtained by setting X-ray threshold levels.

-3D geometry is obtained by image reconstruction.

[Example:Torso]

ΤΟΥΟΤΑ

X-ray CT scanner

Sectional points groups

3D geometry (STL) 6/21

2-3. Mesh Generation

FE mesh is made in detail to represent 3D data w/o omission

- Element size: 3-5mm for deformable parts
- Skin parts: Meshed with Solid Element

2-4. Material Properties

Test specimens are taken out of a new physical dummy

- Static tension tests for 49 parts

Total 49

- Dynamic tension tests for 7 parts such as "Lumber spine"

The Number of Test Specimens

Material	The No. of Specimens
Steel	26
Aluminum	5
Dumping Material	2
Rubber	8
Vinyl	5
Ensolite	1
Etc.	2

8/21

2-5. Mechanical Properties

- Joint stiffness is measured at 27 joints
- Ave. value from 90 data obtained at each joint is applied

Measurement of Shoulder Joint

Measurement Result

3-1. Model Validation

- 10 certification tests based on FMVSS208 are conducted
- Tests for chest characteristics and sled test are added

	Assembly	Standard Certification Test	Result	Additional Test	Result
Compornent	Head	Head Drop Test	0		Result
	Neck	Neck Pendulum Test (+)	0		
		Neck Pendulum Test (-)	0		
	Thorax	Thorax Impact Test	0	Thorax Impact Test (Low Speed)	0
				Rib Static compression Test	0
				Thorax Dynamic Seatbelt Test	0
	Pelvis	Hip Joint-Femur Flexion Test	0		
	Knee	Knee Impact Test	0		
		Knee Slide Impact Test	0		
	Leg	Upper Foot Impact Test - without Shoe	0		
		Lower Foot Impact Test - without Shoe	0		
		Lower Foot Impact Test - with Shoe	0		
Sled	AII			Full Lap Sled Test	0

3-2. Measurement of Chest Deflection

- Chest deflection is equal to the displacement of the sternum plate relative to the spine box.

3-3. Dynamic Seatbelt Loading

- Seatbelt tension loading on the chest fixed spine rigidly
- 2 tests of different belt path on the chest are evaluated

Test Condition

Tension velocity is aimed to simulate chest deflection rate in crash tests.

-55mm

[Path A]

[Path B]

Comparison of Seatbelt Path

3-4. Comparison of Internal Kinematics

- The sternum plate kinematics coincide with the test.

Simulation

3-5. Comparison of Chest Deflection

Chest deflection is well coincide with the test in both 2 path conditions.

<u>Chest Deflection (Test Max. Value Original Pass=1.0)</u>

3-6. Frontal Full Lap Sled Test

Sled condition: 48km/h Full lap frontal crash
Restraint system: Seat, Seatbelt with force limiter

Simulation Model

Simulation Condition

Impact Velocity	48 km/h
Occupant	Passenger
Airbag	Not Available
Instrument Panel	Not Available
Seatbelt	Available
Pretensioner	Activated
Force Limiter	4 kN

3-7. Comparison of Kinematics

- Kinematics of FE model correlates to test.

Simulation

<u>Test</u>

3-8. Comparison of Chest Def.

- Chest deflection of FE model correlate to test data.

4-1. Kinematics

- •0~50ms: Translational movement bet. chest and pelvis
- •50ms \sim : Forward movement with rotation in thorax

Displacement of Thorax and Pelvis

4-2. Acting Force from Belt

• 50~80ms: Acting force on clavicle increases while that Force on rib keeps constant.

5. Conclusions

- (1) Developed a detailed FE HIII Dummy model with reverse engineering using X-ray CT scans.
- (2) Material properties were studied by cutting out test specimens from dummy component parts and performed static and dynamic tests.
- (3) The force response of the developed FE model was verified in comparison tests and found to be consistent with the results obtained from a physical dummy.
- (4) It was concluded that this detailed FE model is effective for analyzing deformation and force transfer inside the dummy in crash tests.

Thank you for your attention.