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Abstract: 
 
This paper deals with an advanced model for spotwelds in finite element structures of car bodies 
under crash loads. The treatment is elasto-plastic, whereas the elastic part as well as the perfectly-
plastic part is based on a special hybrid Trefftz element representing the entire spotweld, the 
cylindrical nugget, heat affected zone and an annulus made of base material. The linking to the 
residual finite element mesh, consisting of bilinear standard shells, is accomplished via a displacement 
frame, an arbitrary polygon. By definition the Trefftz-type solution satisfies a priori all governing 
differential equations within the element area and fulfils inner boundary conditions. The modelling of 
plastic deformation accounts for geometrically nonlinear behaviour (stress stiffening) within the metal 
sheet annulus and permits the forming of plastic hinges along the circumference of the comparatively 
rigid nugget. Isotropic hardening is considered by Hollomon’s power law leading to a high resolution of 
the stress/strain field in the vicinity of the spotweld nugget, and enables the introduction of more 
accurate stress/strain-based failure criteria. The developed model is mapped on an auxiliary “beam 
spider”, whose elasto-plastic parameters are adapted so that it yields nearly the same mechanical 
resultant behaviour including failure. We assess the numerical stability within the framework of explicit 
time integration using the central difference scheme. 
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1 Introduction 
Today’s cost pressure forces carmakers more and more to shorten and diminish development-times 
and -cycles, which is only possible with efficient application of simulation methods in the early phases 
of concept and development. So engineers are always looking for simulation tools providing an 
optimized cost-value ratio concerning numerical calculation time against technical benefit from its 
output. 
It is well known that in all classical disciplines regarding numerical investigation of the mechanical 
behaviour of sheet metal components, which are jointed via spotwelds or rivets, the quality of 
modelling these joints is one of the crucial factors for their performance: The application of inaccurate 
jointing elements causes the loss of stiffness of BIW (Body in White) up to 35 %. On the other hand, a 
stress deviation of 10% in the vicinity of the spotweld nugget causes a 10 times higher error for its 
durability forecast, etc. 
 
 

2 Hybrid Trefftz Formulation 
Finite elements based on polynomials proved an effective tool for solving partial differential equations. 
However, there are problems, for which good approximated solutions can only be obtained with high 
effort by applying standard finite elements, or it is impossible at all. These are usually problems, 
whose solutions or their partial derivatives can’t be approximated well by polynomials used in the finite 
element method. That’s the case for the simulation of the mechanical behaviour of a spotweld. The 
linear or quadratic standard shell elements are not suited for the cylinder symmetry dominating in the 
surrounding area of the circular spotweld nugget. The fact, that the difficulties in finding good solutions 
arise from these small parts of the entire structure, suggests the introduction of special finite elements, 
which are adapted to the local conditions via special shape functions. Suitable for this purpose proves 
a coupled pair of special Trefftz elements with a circular boundary Γ1 within the element area Ω 
(Fig.1a). As per definition the shape functions satisfy the governing differential equations within Ω, and 
fulfil boundary conditions on inner boundary curves Γ1. The spotweld nugget is approximately rigid 
compared to the adjacent sheets because the martensitic nugget has a higher yield point than the 
ferritic sheet, and the elastic plate bending stiffness is proportional to the 3rd power of the thickness. 
Thus the comparatively rigid spotweld nugget is represented by a rigid cylinder, which connects both 
inner circles of the Trefftz elements (Fig.1b). This linkage is implemented by coupling a pair of auxiliary 
nodes (Fig.1c). These lie in the center of Γ1, and carry the spatial displacement and rotation of the 
spotweld nugget. In addition to the special spotweld elements, bilinear standard shells are arranged 
on uncritical sub-domains of the structure. The linking is accomplished via a displacement frame Γ5, 
an arbitrary polygon, formed by the set of shared edges of all adjacent standard shells. 
 

 
 
Figure 1: (a) The Trefftz element area Ω with the circumference of the spotweld nugget Γ1, and the 
polygon Γ5 of shared edges with all adjacent standard shells. (b) Linkage of two Trefftz elements by a 
rigid cylinder (spotweld nugget) is accomplished via a pair of auxiliary nodes (c). 
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2.1 Linear Elastic Deformation 

It is well known, that in the case of linear elasticity the system of thin-plate equations concerning 
membrane- and bending-type deformations decouple completely, so they can be dealt with separately. 

2.1.1 Membrane-type deformation 

Extension of the principle of minimal potential energy: The essential trick is to introduce an additional 
term in the potential energy leading to a weak form, which transmit the essential displacement 
boundary condition along the polygon into natural one. Now we have two distinct displacement fields 
along the polygon, which are not necessarily identical. The first comes from the solutions within the 
element area, and the second one is the prescribed displacement field equal to the linked standard 
shells, for example, piece-wise linear between nodes. Minimization of the potential leads to a stiffness 
matrix which can be coupled with any other finite element with similar displacement assumptions. 
The additional requirement of geometrical boundary conditions uu

rr
=  can be avoided, if the first 

variation of the potential is extended by an artificial term, 
 
 [ ]∫Γ − tdsuuT T rrr

δ , (1) 

 
where t is the plate thickness and T

r
 the traction acting along the boundary Γ. Both, the displacement 

and stress boundary conditions are now natural conditions. The weak form (1) serves as a starting 
point for a technique to link Trefftz elements with adjacent bi-linear standard shells (Piltner [7]). The 
prescribed displacement vector u

r
 is identified with the linear boundary displacement field u

r~  on the 
closed boundary curve Γ5, 
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with nodal displacements u
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ˆ . The vectors U
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 are defined piecewise along distinct edges of 

the polygon Γ5, with a total of n nodes, 
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The first vector refers to the edge between node 1 and 2, the second between 2 and 3, etc. Lengths 
of edges from node i to node j are denoted by si,j, and s means the distance of an arbitrary point on 
an edge to its ”first” corner. 
 

2.1.2 Bending-type deformation 

Bending is considered within the framework of Kirchhoff’s theory of thin plates. Analogous extension of 
First variation of the potential by additional terms 
 
 [ ] [ ]∫ ∫Γ Γ

∇−∇+− dswwMdswwQ T
r

δδ , (4) 

 
with Q and M

r
 as force acting normal to the plate and moment twisting the boundary Γ, respectively 

(Heubrandtner et al. [2]). The prescribed bending-type displacement vector, analogous u
r

, consists of 
the out-of-plane displacement, w , and additional rotational degrees of freedom, w∇ , with respect to 
axes lying within the plate-plane. 
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2.1.3 Analytic solutions 

Both, membrane- and bending-type deformation can be reduced to bi-harmonic functions, Airy’s stress 
function, 04 =∇ U , and out-of-plane displacement, 04 =∇ w , respectively. The general solutions are 
presentable by the real part [ ])()( zzz Ψ+Φℜ  with complex potentials Φ and Ψ introduced by 
Kolosov-Muskhelishvili [4, 5, 1], and z = x + i y, z = x − i y. An analytically deduced stress field within 
the Trefftz element area for an exemplary load case can be seen in Fig.2. 
 

(a) (b) (c) 
 

Figure 2: Example of contour diagrams of the stress components σxx (a), σyy (b) and τxy (c) within the 
Trefftz-element area. 
 
 

2.2 Plastic Deformation 

We consider a elasto-plastic isotropic material subjected to von Mises yield surface 2
3
2Yijij =′′σσ , 

with the deviatoric stress ijσ ′  and tensile yield stress Y. It is additionally assumed, that during crash 
load the principal stress and strain ratios are held approximately constant (Hencky conditions) in the 
surrounding of the spotweld nugget, so the normality principle simplifies to a non-incremental form (Hill 
[3]) σσεε ′=′ 23 , with deviatoric strain ε ′ , and equivalent strain ε  and stress σ . Within the 
framework of Hencky plasticity the displacement field fulfils a variation principle: ur  minimizes the 
energy functional (Anzellotti and Giaquinta [6]). For rigid-perfectly plastic materials this functional can 
be given in the following form, 
 
 ∫Ω ′= dVuuE )()( rr ε , (5) 

 
where ur  fulfils incompressibility, 0=⋅∇ ur , and satisfies all boundary conditions along Γ. The 
corresponding Euler equation is simply the Laplace equation, 
 

 02 =∇ w , (6) 
 
so w(x, y) is a harmonic function within Ω. 
 

2.2.1 Thin plate kinematics in consideration of large deflection (stress stiffening) 

Kinematical assumptions within the framework of thin plate approximation are reflected in the 
displacement field 
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The Green-Lagrange strain tensor for thin plates is (Zienkiewicz and Taylor [10]) 
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where the strain component causing sheet thinning is determined from volume constancy. For further 
proceeding the area Ω can be divided into two parts with qualitatively different predominating 
deformation types. 
- 1 Plastic bending, plastic hinge: 
The rigid circumference of the spotweld nugget acts like a plastic hinge, so the second term in (8), the 
curvature, is dominant, and the corresponding plastic work becomes (for the case of no work-
hardening) 

 ∫Γ ∂
∂

+≈
1

2
1

2
1 1

32
ds

n
wRYtWp , (9) 

 

where 
n∂
∂

 means outward normal derivation along the inner circle. 

 
- 2 Plastic stretching: 
In the course of out-of-plane deformation the first term in (8), representing the plastic membrane type 
deformation, becomes more and more crucial. Additional neglect of in-plane displacements yield the 
following expression for plastic work (for the case of no work-hardening) 
 

 ∫Γ ∂
∂

= wds
n
wYtWp 3

2  (10) 

 
The linearity of governing differential equation (6) offers the development of a finite spotweld element 
by Trefftz formulation. It covers Hencky plasticity for the case of monotonic loading (Fig.3). 
 
 

 
Figure 3: Hybrid Trefftz finite spotweld element covering Hencky plasticity. The material is 
rigid/perfectly plastic. 
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3 Failure (Instability) Criteria 
Real tests show, that spotwelds under crash loads fail predominantly at the circumference of the 
nugget (within the base material) (see Fig.4). The ideal rigidity of the nugget enforces the state of 
plane strain on its circumference. Swift’s instability law, 
 
 nmajor =ε , (11) 

 
for the onset of local necking is used to predict spotweld failure, where majorε  is the major principal 

strain (in-plane) and n is the hardening exponent of the base material. Alternatively, the plane 
strain–point on the forming limit curve (FLC) of the base material can be used. The results are 
compared with real quasi-static tensile tests (see Table 1) and show a good coincidence between 
theory and experiment. 
 

(a) (b) 
 

(c) (d) 
 
Figure 4: Micrographs of failed spotwelds: (a), (b) normal tension (90°-direction); (c), (b) loaded under 
30°-direction. The reason for failure is the onset of local necking of the base material in the vicinity of 
the nugget. 
 

3.1 Three Elementary Load Cases 

Three elementary load cases are investigated analytically (Heubrandtner et al. [11]): 
i) Normal Tension: In the course of proceeding out of plane deformation the first term in (8), 
representing the plastic membrane-type deformation, becomes more and more crucial. Additional 
neglect of in-plane displacements yield the following expression for the plastic work, using Hollomon’s 
power law for work-hardening, nKεσ = , 
 

 ∫ +
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Minimization of the displacement field, assuming the conditions of Hencky plasticity are met; leads to 
analytical expressions for ultimate normal forces concerning stretching and bending along the 
spotweld nugget circumference acting as plastic hinge, respectively, 
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ii) Shearing: The plastic work is 
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and the corresponding ultimate force deduced from the variational principle of Hencky plasticity 
becomes 
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iii) Torsion: In the case of torsion there arises no plain strain but a pure shear condition. So there is 
no plate thinning and consequently no local necking. The used failure criteria is the shear strength, 
approximately a half the tensile strength S. Ultimate resultant moment is deduced from the plastic 
work, 
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leading to 
 tSRM 2

1
2
max π= , (18) 

 
which could also be obtained more directly by considering the local circumferential stress field. 
Comparison of measured maximum forces and corresponding analytical expressions shows a good 
accordance (see Fig.5, Table.1). 
 
 

(a)    (b)    (c) 
 
Figure 5: Real tensile tests with single-spot welded bowl specimen (a). Force vs. displacement is 
measured until total separation of the two bowls (b). The spotweld radius R1 needed for the analytical 
expressions for the maximum forces at failure is obtained from micrographs of the spotweld (c). 
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Table 1: Comparison of calculated and measured maximal forces at instability/failure. 
 
 

3.2 Hybrid Load Case 

To predict the failure for a general load case, which is a combination of the three basic load cases, we 
make the assumption, that the maximal failure values for hybrid load cases span a closed surface 
within the space of the three basic load cases. This can be for example an ellipsoid. The maximum 
quantities are obtained from (14, 16, 18). 
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4 Implementation into LS-Dyna (Explicit Time Integration) 
To make the benefit from Trefftz formulation applicable for LS-Dyna an analogous model, made of 
beam elements, is constructed. The elasto-plastic beam parameters are calculated automatically in 
such a way, that the entire structure behaves similar to the corresponding elastic-plastic Trefftz 
element (Fig.6). This approach has essential advantages compared to standard methods. It provides 
realistic kinematical behaviour of the spotweld under crash loads, for example realistic twisting of the 
nugget due to shear loading, because it takes its circular shape and size into account. Realistic 
kinematics is required to determine the position inside or outside of the failure envelope (19), and thus 
very important for the failure prediction. Numerical stability within the framework of explicit time 
integration is guaranteed by adapting the beam stiffness slightly if necessary. Analytically evaluated 
failure envelope (19) is used as failure criteria of the beam connecting the both mid-nodes (Fig.7) 
 

(a) 

 

(b) 
 
Figure 6: The elasto-plastic spotweld element (hybrid Trefftz finite Element) (a) is replaced by a 
system of beam elements, that exhibits similar resultant behaviour. 

Tension Shear
Test# Material Thickness [mm] max. Force [kN] Test# Material Thickness [mm] max. Force [kN]

1 DC04 1.00 5.47 1 DC04 1.00 7.70
2 DC04 1.00 5.29 2 DC04 1.00 7.62
3 DC04 1.00 5.46 3 DC04 1.00 7.07

Analytical DC04 1.00 5.33 Analytical DC04 1.00 7.50
1 H400LA 1.00 5.10 1 H400LA 1.00 8.78
2 H400LA 1.00 4.82 2 H400LA 1.00 9.47
3 H400LA 1.00 4.67 3 H400LA 1.00 10.77

Analytical H400LA 1.00 4.85 Analytical H400LA 1.00 9.31
1 DC04 1.75 10.52 1 DC04 1.75 13.09
2 DC04 1.75 10.70 2 DC04 1.75 13.14
3 DC04 1.75 10.95 3 DC04 1.75 13.32

Analytical DC04 1.75 10.77 Analytical DC04 1.75 13.12
1 H400LA 1.75 12.03
2 H400LA 1.75 14.82
3 H400LA 1.75 14.43

Analytical H400LA 1.75 14.41
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Elasto-plastic beam-
analogous model

Beam with failure

Elasto-plastic beam-
analogous model

Beam with failure

 
 

Figure 7: The analogous models made of beam elements are connected by a beam element including 
failure. 
 

4.1 Pre-Processor Tool 

A pre-processor tool is developed which provides automatically setting of the spotweld elements into 
the independently meshed finite shell-element structure of the car body. The input data are the LS-
Dyna key-file, the connectors-file, containing the information about positions and shapes of all 
spotwelds, and an additional file, which assigns the range of free values for all needed spotweld 
identification numbers. Additionally you can choose between a spotweld element, optimal for pure 
elasticity or plasticity including failure. 
 
 

5 Summary 
A finite spotweld element based on hybrid Trefftz formulation is developed with a rigid cylinder, 
representing the comparatively rigid nugget, and the surrounding area of the metal sheet, which is 
linked to the adjacent shell element structure via an arbitrary polygon. It covers linear elastic 
membrane- and bending- type deformations within the framework of Kirchhoff’s thin-plate 
approximation. Hencky’s deformation theory for a rigid-perfectly plastic material yield linear governing 
differential equations for the displacement field, by taking geometrical non-linear (stress stiffening) into 
account. Plastic bending, which is concentrated at the rigid circumference of the spotweld nugget, is 
incorporated into the model by means of a circular plastic hinge. The elasto-plastic properties are 
mapped onto an analogous structure made of standard beam elements to become applicable in Ls-
dyna. Numerical stability concerning explicit time integration is guaranteed by adapting the beam 
stiffness slightly, if necessary. Spotweld failure (instability) due to the onset of local necking in the 
vicinity of the nugget is predicted analytically by Swift’s law, or forming limit curves, for three 
elementary load cases: shear, tension and torsion. Their ultimate forces and moment span a closed 
failure envelope within the space of the three basic load cases. Trefftz formulation provides the 
advantage over standard spotweld models to offer more realistic kinematical behaviour of the 
spotweld nugget within the entire structure during crash loading. Its kinematical state determines the 
current position in the space of the three elementary load cases, whether it is inside or outside of the 
failure envelope. 
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