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1 Introduction 

The use of carbon fabric reinforced polymers (CFRP) in the automotive industry increased very 
significantly due to their high specific stiffness and strength, their great energy absorption as well as 
the reduced manufacturing cost. 
The behaviour understanding and modelling of these materials become essential for their 
implementation into the design loop, needed for the deployment on mass-produced vehicles. In order 
to ensure the protection of pedestrians and drivers/passengers in case of collision with a CFRP panel, 
a model dedicated to the finite element analysis (FEA) of impacts is needed. 
The nonlinear material behaviour which leads to differences in the impact response of composites is 
attributed to fibre failure, intra- and interlaminar matrix cracking, fibre-matrix debonding and strain rate 
sensitivity of the matrix. Additionally, the textile composite materials are capable of large shearing prior 
to the ultimate failure due to the sliding and reorientation of yarns. The modelling of all these 
phenomena is essential to describe the impact behaviour of layered fabric composites. 
This study is focused on the matrix damage (intralaminar and interlaminar) modelling in a finite strain 
framework. 
The intralaminar matrix damage model relies on a close version of the Onera Damage Model 
proposed by Marcin [1]. Marcin adapted and extended the micromechanics based Continuum Damage 
Mechanic model proposed by Chaboche [2] to the fabric reinforced materials for implicit simulations. 
The spectral viscoelastic model used in the Onera Damage Model is replaced by a generalized 
Maxwell model. It has been successfully extended and used in finite strain for anisotropic materials [3]. 
This present damageable viscoelastic model is then expressed in the finite strain framework. 
The consideration of the interlaminar damage in finite element analysis is nowadays a challenge. The 
classical framework is to use cohesive elements associated to specific cohesive laws in the ply 
interface layers. However this method is time-consuming and does not allow the formulation of the 
dependence between the intralaminar and the interlaminar damages. Moreover, the number of 
elements through the thickness of the layered material has to be expanded to approach the real 
transverse strain distribution. Another solution is to recompute the strain distribution by using a higher-
order zigzag formulation. Kim and Cho [4] have proposed a formulation with five degrees of freedom 
and which takes into account interfacial imperfections. By ensuring an energy balancing between this 
formulation and the formulation used by the element, it is possible to recover a realistic displacement 
field through the thickness of the layered materials [5]. This theory has been implemented in a user 
material subroutine in LS-Dyna. 
 

2 Continuum matrix damage model 

Experimentally the matrix cracks are observed to be oriented in the directions of reinforcement or 
transverse to them. As the Onera Damage Model MicroStructure (ODM_MS) [1] is based on this 
assumption, the present model relies on a close version of the ODM_MS. 

2.1 Constitutive relation 

The model is formulated in strain-space to ensure a good efficiency for FEA. The constitutive relation, 
by using the Voigt notation, is defined as follows 

)(::
~ sr   0m

CC  (1) 
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where   and   are respectively the infinitesimal stress and strain tensor. 
0

C  is the initial stiffness 

tensor and 
m

C
~

 is the effective stiffness tensor. 

The stored strains 
s  are needed in order to avoid the discontinuity of the ),(  response for bi-axial 

loading, and to ensure the recovery of the initial stiffness after the damage deactivation. 

The evolution of the residual strains 
r  is dependent on the damage evolution. 

2.2 Effective stiffness tensor 

The damage is introduced by adding additional compliance to the initial compliance tensor 
0

S . The 

effective stiffness tensor is thus defined with 

mm
SSC  01)

~
( . (2) 

The additional compliance tensor due to the matrix damage is given by 


i

m

i

m

i d m

i

m
HS   (3) 

where 
m

iH  is the compliance tensor associated with the damage variable 
m

id .
m

i  represents the 

crack closure index which varies from 0 (closed crack) to 1 (opened crack). 

2.3 Damage evolution 

In order to describe separately the different fracture modes, two driving forces affect the evolution of 

each damage variable: the normal 
nm

iy  and the tangential 
tm

iy  to the damage directions. The 

thermodynamic forces so defined are dependent on the effective strain tensor, which corresponds to 
the positive part of the spectral decomposition of the strain tensor. 
Therefore, the damage criterion is defined as follows 

0)()(  m
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i

m

i dyfyfF  (4) 

with f  the cumulative distribution function of Weibull. 

This formulation — compared to a standard frame where the thermodynamic forces are based on the 
derivative of the Helmholtz free energy — makes easier the parameter identification, retains the 
explicitness of the formulation and ensures the thermodynamic coherence. 

3 Viscoelastic damageable continuum model 

The generalised Maxwell model is well adapted to the explicit finite element method because of the 
direct dependence of the total stress with the strain. It is symbolically represented by a spring of 

stiffness C  paralleled with N  Maxwell elements (Fig.1). 

 

Fig.1: Generalised Maxwell Model 

Hence, the total stress, provided by the coupling between the above mentioned matrix damage and 
the generalised Maxwell viscoelastic models, is given by 

 

i

jh
~

  (5) 
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where   is the long-time stress, defined by means of the ODM_MS with the equation (3), and jh
~

 is 

the effective viscoelastic stress of the j-th branch. This tensor is determined thanks to the Boltzman 
superposition principle and is expressed in an iterative form [3] by 
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with 
nn ttt  1

, )()( 1 nn tt   
 and 

m
C j

~
 the effective viscoelastic stiffness tensor. This 

tensor is defined in a same manner as the effective stiffness tensor presented in the subsection 2.2. 
Consequently, 

1)
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where 
m

id  is the same damage variable as that used during the computation of the long-time stress in 

the equation (3), 
0

S j  is the initial viscoelastic compliance tensor and 
ve,m

ji,H  is the viscoelastic 

compliance tensor associated with the damage variable 
m

id . 

To use the same damage variables is not unreasonable as the matrix damage and the viscoelasticity 
are both inherent in the resin. 

4 Material model formulation for finite strain 

Given the shear behaviour of the fabric composite ply with the possibility of large rotations of the 
yarns, the base (or undeformed) and the current (deformed) configurations cannot be assumed 
identical. It is therefore essential to extend the model in finite strain. 
With few exceptions, Lagrangian (or Material) coordinates are used to describe the deformations of a 
solid. This approach facilitates the formulation of material constitutive models since the position and 
the physical properties of solid particles are described according to a reference position of these 
material particles and time. 

4.1 Expression of tensors 

As the objective is the formulation of a constitutive model in finite strain for structural analysis, it is 
appropriate to recall the definition of strain and stress tensors. 

 

Fig.2: Deformation of a body with representation of undeformed and current configurations. 

Let 


dx  be a position vector which describes material points in the undeformed configuration. The 

material points in the deformed configurations are now described by 


dx  (Fig.2). The change of the 

material points is defined by the function ),( tXmx Iii  . Hence, the differential is 

J

J

i
i dX

X

x
dx




  (8) 
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which leads to the definition of the deformation gradient tensor F  by 



 dXdx F  with 

J

i
iJ

X

x




F . (9) 

The transformation of a volume element 0dv  to a volume element dv  is given by the relation 

0dvJdv   with )det(FJ . (10) 

The elongation of a position vector in the 


N  direction is defined as 

0

0)(
dl

dldl
N






 . (11) 

Lastly, the shear angle is determined by 

);();(),(


 nmNMNM . (12) 

From now, a distinction should be made between the tensors expressed according to the base 
configuration or the current configuration. 
First of all, suppose that the reference is the base configuration. The scalar product of the material 
vectors in the current configuration, evaluated according to these material vectors in the base 
configuration, is given by 



 XdXxdx  C  (13) 

where FFC
T  is the right Cauchy-Green deformation tensor. Similarly, the variation of the scalar 

product according to the material vectors in the base configuration is defined with 



 XdXXdXxdx  E2  (14) 

where )(21 1CE   is called the Green-Lagrange strain tensor with 1  the identity tensor. 

In a consistent manner, but by considering the current configuration as reference, the strain can be 

described by the Almansi tensor )(21 B1A   where 
T

FFB   is the left Cauchy-Green 

deformation tensor. 
Now that the different strain tensors are defined, the stresses have to be evaluated according to both 
configurations too. 


df  is a force which acts on the current body and is the only one measurable from the experiments. By 

expressing the force vector according to the base or the current configuration, this leads to 















0dSNdf

dSndf

Π

T
                      (15) 

with T  the Cauchy stress tensor and Π   the first Piola-Kirchoff stress tensor (PK1). Note that 

whereas T  is symmetric, Π  because of its mixed nature is not. 
 

Let 
0



df  be a virtual force, seen as the equivalent of 


df  which may act on the reference configuration. 

0



df  has no physical existence and is the transposition of 


df  in the base configuration: 






 dfdf 1

0
F . 

Hence, a new stress tensor integrally based on the reference configuration can be defined through the 

relation 00
dSNdf



 S  with 
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ΠFS
1  (16) 

where S  is called the second Piola-Kirchoff stress tensor (PK2) and S  is symmetric. 

As a result, the behaviour law in finite strain is according to the reference configuration by finding the 

relation )(ES s  which ensures the material objectivity and preserves the material direction during 

the deformations. 
However, LS-Dyna uses an Updated Lagrangian Framework and the stress need to be expressed 
according to the current configuration (Cauchy stress). The Cauchy stress are recovered from a push 

forward operation: 
T1

FSFT
 J . 

After application of the finite strain framework to the viscoelastic matrix damage model and the 
appropriate parameter identification, an example of simulation can be seen Fig.3. 

 

 

  
  

Fig.3:  Experimental/numerical comparison of a monotonic tensile shear test (±45°) on a Non-Crimp 
Fabric coupon and visualisation of the damage parameter (red is maximum) on a quartile of 
coupon. 

 

5 Recomputation of the strains for layered materials 

The shell element formulations in LS-Dyna use First-order Shear Deformation Theory (FSDT) with 
correction factor. This theory leads to inaccurate transverse shear distribution through the thickness of 
a layered material. It is therefore impossible to predict eventual interlaminar damages and their effects 
on the transverse shear thickness of the plate. 
Kim and Cho [4] have developed a higher order zigzag theory with interfacial imperfections which 
requires only five degrees of freedom to take into account the delamination effects. Through least 
square approximation, Kim et al. [5] have proposed a methodology to ensure the energy equivalence 
between this formulation and the Mindlin-Reissner Theory (FSDT), called Enhanced First-Order Shear 
Deformation Theory. 
However this methodology is used during the pre-processing phase to compute an effective 
transverse shear modulus and the associated shear correction factor. This a priori computation does 
not allow the study of the damage evolution during a finite element simulation. The equilibrium balance 
and the determination of the displacement field based on the EFSDT has been integrated in the user 
material subroutine for accurate simulations of impacts on layered plates. 

5.1 Displacement theory 

Note: The Greek indices take values of 1 or 2,   is the Kronecker symbol and )(H  is the 

Heaviside function. 
The higher-order zigzag displacement field is given by 





D

d

d
d

xxHuxuuu
1

)(

33

)(

3

0

,3

0 )(   and 
0

33 uu  . (17) 

The 
0u variables represent the displacements of a point on the reference plane at the 

position  1;1  and 
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


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h
x    (18) 

with 
)(ka  a coefficient which represents the change of slope at the k-th interface. 

)(d

u  is the displacement jump due to the delamination at the interface (d) and is defined by 

)(

3

)(
)(

dd
d

Ru    (19) 

with 
)(dR  the compliance of the d-th interface. 

Thus, the displacement field can be rewritten 

  3

0

,3

0 xuuu  (20) 

The newly introduced function  is defined by 

wCT     (21) 

with 

   )()( )(

33

)(

33,

)(,)( kkksk xxHxQRT    (22) 

and 







)1(
2

)1(
2

3)(
1 


 

h

h

w dxT
h

C . (23) 

wC is added to make the displacements of the reference plane the variables. 

5.2 Energy balance 

The Mindlin-Reissner plate theory provides a displacement field defined as follows: 

3

0 xvv   , (24) 

0

33 vv  . (25) 

This displacement field is considered as the average displacement of the EFSDT through the least 
square approximation and it leads to the following relationship: 






   





)1(
2

)1(
2

3

00 )(
h

h dxuv , (26) 






   





)1(
2

)1(
2

333

0

,3 )(
12

h

h dxx
h

u , (27) 

0

3

0

3 uv  . (28) 

Thus, the strain relationship is given by 

h C
~00  , (29) 

h Γ
~

 , (30) 
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010 ~
sss   Γ . (31) 

The tensors C
~

, Γ
~

 and sΓ
~

are obtained thanks to an iterative loop which minimizes the difference 

between the internal energy of the FSDT and of the EFSDT [6]. 
The displacement field is then recovered by following the equations 

   0

,3

10

,3

00 ~~
  vCvvu  

 (32) 

and 

0

33 vu  . (33) 

5.3 Principle 

The classical scheme in LS-Dyna, and by using ihyper≠0 in *MAT_USER_DEFINED_MATERIAL, 

provides the deformation gradient as input of the user material subroutine. From that, the Cauchy 
stress has to be returned (Fig.4). 

 

Fig.4: Classical Total Lagrangian UMAT subroutine formulation. 

In the case of the present theory, the deformation gradient of the reference plane and the gradient of 
the deformation gradient of the reference plane are needed as input of the umat subroutine. Thanks to 
a light modification of the urmats subroutine (in the dyn21.f file) and by using the usrshl_defgrad 

function, these data are passed as input parameters. 
For each element and for each new time step the energy balance is achieved. The interlaminar 
damage is then computed thanks to the stress computation at the interface and these data are stored 
to be used by the umat subroutine for the next integration points of the element and for the future time 
steps. 
From this, the deformation gradient at the current integration point is computed and the classical 
algorithm can be recovered (Fig.5). 
An example of transverse shear stress distribution computed by the present theory is provided Fig.6. 
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Fig.5: Total Lagrangian UMAT subroutine formulation for layered materials. 

 

Fig.6: Transverse shear stress of a layered [45°,0°]s unbalanced textile composite during 3-point 
bending obtained by application of the EFSDT in the user material model. 

6 Summary 

The high specific stiffness and strength, the ease of shaping as well as the great impact performance 
of layered fabric reinforced polymers encourage their diffusion in the automotive industry. In order to 
increase the predictability of explicit finite element analysis (FEA) a material model intended for impact 
simulations has been developed. 
The material model combines the intralaminar behaviour and the effect of delamination without using 
computationally expensive methods, such as the use of cohesive elements. This allows the use of one 
element across the thickness of the laminate and an interaction between intra- and interlaminar 
damage. 
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The intralaminar behaviour model is based on the explicit formulation of the matrix damage model 
developed by the ONERA. Coupling with a Maxwell-Wiechert model, the viscoelasticity is included 
without losing the direct explicit formulation. The numerical instabilities, due to the strain-softening 
from the fibre failure, are managed by the smeared-crack approach depending on the element size. 
Additionally, the intralaminar model is formulated under a total Lagrangian scheme in order to maintain 
consistency for finite strain by tracking the material direction and by ensuring objectivity. 
Thanks to the membrane deformation provided by a Mindlin-Reissner shell formulation and the 
stacking sequence, the material model is able to compute the through-thickness strains. Based on a 
higher-order zigzag displacement theory with interfacial imperfections, the strains are established by 
using an internal loop, which ensures the internal energy equilibrium between both plate theories. The 
stress at Gauss points are then computed by using the intralaminar model. 
This work provides a way to precisely predict the damage and the behaviour of composite plates 
under impact loading. 
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