

# **USAGE OF LS-DYNA IN METAL FORMING.**

# DR. M. FLEISCHER, A. LIPP, DR. J. MEINHARDT, DR. P. HIPPCHEN, DR. I. HEINLE, A. ICKES, T. SENNER





# TABLE OF CONTENTS.

- Introduction.

- Forming simulation at BMW State of the art.
- Limiting factors for the current simulation systems.
- Summary of current use of LS-DYNA.

- Future challenges.



# TABLE OF CONTENTS.

- Introduction.

- Forming simulation at BMW State of the art.
- Limiting factors for the current simulation systems.
- Summary of current use of LS-DYNA.

- Future challenges.



### INTRODUCTION. BMW GROUP PRODUCTION NETWORK.



#### INTRODUCTION. TOOL SHOPS OF THE BMW GROUP.



**Eisenach – Tool shop:** Process design. Tool Construction. <u>Tool P</u>roduction.

**Dingolfing - Tool shop:** Process design. Tool Construction. Tool Production. Support for Production.

**Munich – Tool shop:** Tool Construction. Tool Production. Support for Production.

Munich - FIZ-Network: Concept of Production. Tool Development. Tool Construction. Process validation.

## INTRODUCTION. FROM DESIGN TO TOOL AND PRESS.

#### - Car design.



- Process layout.







## INTRODUCTION. PRESS SHOP.

– Raw material.



– Press line.



- Coil-cut.



- Forming tool.



## INTRODUCTION. PRESS SHOP.

#### Exemplary setup of a forming tool of a hood-inner.



# TABLE OF CONTENTS.

Introduction.

- Forming simulation at BMW State of the art.
- Limiting factors for the current simulation systems.
- Summary of current use of LS-DYNA.

- Future challenges.



#### FORMING SIMULATION AT BMW – STATE OF THE ART. APPLICATION OF SIMULATION IN THE TOOL DEVELOPMENT PROCESS.



### FORMING SIMULATION AT BMW – STATE OF THE ART. SOFTWARE CONCEPT.



#### – Application of forming simulation.

Modification of model parameters

## FORMING SIMULATION AT BMW – STATE OF THE ART. DETERMINATION OF MATERIAL PARAMETERS.

# Generation of material cards: Selection of the used material model and definition of the model parameters.



Usage of LS-DYNA in metal forming. 10th European LS-DYNA Conference – 15. - 17.6.2015.

# FORMING SIMULATION AT BMW – STATE OF THE ART. COLD FORMING.

#### Design of production and cold forming simulation.





### FORMING SIMULATION AT BMW – STATE OF THE ART. SPRINGBACK COMPENSATION.

#### From forming simulation to springback.



## FORMING SIMULATION AT BMW – STATE OF THE ART. SPRINGBACK COMPENSATION.

# Tool surfaces are modified within the springback compensation process based on simulated or measured data.

-Elastic springback.



#### -Basic concept of springback compensation.



#### FORMING SIMULATION AT BMW – STATE OF THE ART. SPRINGBACK COMPENSATION.

#### Example: 3 Series Gran Turismo - trunk lid inner- prototype.

- Numerical representation of the production process.



- Springback compensation of the tool surfaces.
- Springback result of the final physical part.
  - → Measured data vs. simulated data.



## FORMING SIMULATION AT BMW – STATE OF THE ART. INDIRECT PRESS HARDENING.

Process consisting of multi stage cold forming followed by heat treatment of the trimmed cold formed part.



- Objectives:
  - Tailoring the strength of the part.
  - Geometrically accurate parts made from press hardened steel with complex geometry.

## FORMING SIMULATION AT BMW – STATE OF THE ART. INDIRECT PRESS HARDENING.

 Automated generation of the press hardening process model for simulation using in-house software tools.

| X Powerform 8 - projhis/01Jyrass20 5 MU / PRO(EXTER21_VB5                                |                                  |                                                                                                        |
|------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------|
| Dates                                                                                    |                                  |                                                                                                        |
| Simulations-Projekt: F21 VBS 7263915 A1A TWB 3 PHSSim                                    |                                  | X PowerForm II - /proj/tief01/grass/20_SIMU_PROJEKTE/F21_VBS                                           |
| Televining Propett Calender Optimum Alf 015 AFCCE AFCCE AFCCE AFCCE AFCCE                |                                  | Datei                                                                                                  |
| AFOLS - Processityp: Typ 100: PMS                                                        |                                  | Cinvisions Desists Fot VDC TOCODE At A TWD & DUCCIN                                                    |
| Process-Typ Plotine Merkzeage Operationer                                                | TENE GRAVE CLOSE DRAW            | Simulations-Projekt: F21_VBS_7263915_A1A_TWB_3_PHSSim                                                  |
| Abranced - Reals and reasonfactor Operationen                                            |                                  | Fahrzeug-Projekt. Globale Optionen AF015 AF020 AF025 AF030 AF035 AF040 AF045 Simulation und Evaluation |
|                                                                                          | X Powerform II - /projitief      |                                                                                                        |
| Auswahl der zu berechnenden Sall-Operationen:                                            | Asseabl do Batel                 | AF015 - Prozesstyp: Typ 100: PHS                                                                       |
|                                                                                          | arots Simulations-Projekt:       | F21 Prozess-Typ Platine Werkzeuge Operationen TRIM1 GRAV CLOS DRAW TRIM2 Lagerpunkte PHS Optionen      |
| # AFO15 - STRESSRELAWATION 1                                                             | APOIS - Takonay Propert Clobal - |                                                                                                        |
| # AFO15 - TRIMMING 1                                                                     | # APOIS - Statusations:          | Ofen-Temperatur (*C):                                                                                  |
| # APO15 - CHEOUSHELL, 2                                                                  | # APO15 - Assivate der Derecheum | 1 1900                                                                                                 |
|                                                                                          | # APO15 -                        |                                                                                                        |
|                                                                                          | # APO15 -                        | Ungebungs-Temperatur (*C):                                                                             |
|                                                                                          |                                  |                                                                                                        |
|                                                                                          | Coderationals;                   | 30                                                                                                     |
|                                                                                          | Gobaler Jackas                   |                                                                                                        |
|                                                                                          |                                  | Transportidauer [s]:                                                                                   |
|                                                                                          |                                  | 1 m                                                                                                    |
| APOID - CHECKSHELL_3                                                                     |                                  |                                                                                                        |
|                                                                                          | Arbox Artis NU_NEX               | Werkzeuganfangs-Temperatur PCI:                                                                        |
|                                                                                          |                                  |                                                                                                        |
| # AFO15 - EMPTYSTATION_1                                                                 | Arbou APUIS NU_TIN               | 35                                                                                                     |
|                                                                                          |                                  |                                                                                                        |
| Kildesterung der öpticens bei-                                                           | Arkas Al015 NU_GR                | Kraft beim Härten (kN): Dauer des Härten (s):                                                          |
| "Auswahl der zu berechnenden Sub-<br>Operstamen"                                         |                                  | 13500                                                                                                  |
|                                                                                          | Arbac 20013 NV_018               |                                                                                                        |
| Farbysbung<br>In Process ablaufands "Real"-Sperationan<br>Numerisike "Rilfs"-Operationen | Arber (2011 NV 100               | Abkühtzeit an Umgebungstuft [s]:                                                                       |
| American anti-operations.                                                                |                                  | 600                                                                                                    |
|                                                                                          | Arbao Arois NU_SP                | a01                                                                                                    |
| 4                                                                                        | Arban MOIS NV CO                 |                                                                                                        |
|                                                                                          | Parkin: Arots NO_CO              | Weigedies soft/whister.                                                                                |

Cold forming of b-pillar reinforcement.



- Press hardening of b-pillar reinforcement.
  - Beginning of hardening t<sub>0</sub>.



## FORMING SIMULATION AT BMW – STATE OF THE ART. DRAPING OF CARBON FIBER REINFORCED PLASTICS.

#### Challenging example geometry.

– Simulation. Experiment.

## FORMING SIMULATION AT BMW – STATE OF THE ART. **DRAPING OF CARBON FIBER REINFORCED PLASTICS.**

#### Challenging example geometry.

- Simulation.



 $\Rightarrow$  Numerical prediction of wrinkles matches experimental results.

## FORMING SIMULATION AT BMW – STATE OF THE ART. DEFORMATION OF TOOL AND PRESS.

#### Simulation enables compensation and optimizations of the tool surfaces.



#### - Process modeling.

- Tools (solids), drawn part from forming simulation, etc.
- Process setup with BMW in-house software system.

## FORMING SIMULATION AT BMW – STATE OF THE ART. TRIMMING OF THIN SHEET METAL.

- Objectives:

- Strength and stiffness optimization of the trim steels.
- Prediction of edge fracture during restriking.

- Modeling:

- Employing enhanced material cards and fracture models.
- Employing volume elements (plain stress would be an invalid assumption).



# TABLE OF CONTENTS.

- Introduction.

- Forming simulation at BMW State of the art.
- Limiting factors for the current simulation systems.
- Summary of current use of LS-DYNA.

- Future challenges.



## LIMITING FACTORS FOR THE CURRENT SIMULATION SYSTEMS. SOLVER AND INFRASTRUCTURE.

- Limits of solver and numerical modeling.
  - Number of degrees of freedom.
  - Element formulation.
  - Kinematic of press and tool systems.
- Limits of computer-hardware.
  - CPUs.
    - Cores / Clock frequency  $\rightarrow$  Cost.
    - 32- vs. 64-Bit Single- vs. DoublePrecision.
  - Main Memory RAM.
  - Connectivity between the cluster nodes.



Algorithms.

Implizit

Finite-Flements.

## LIMITING FACTORS FOR THE CURRENT SIMULATION SYSTEMS. EXAMPLES FROM ENGINEERING PROCESS.

#### Simulation of large models – daily engineering.

- Mini Clubman - Door Inner: Simulation with line beads (Initial design).



-Number of elements: ~ 600.000
-Element size: 1,2 mm
-Computational time: 32CPUs: ~ 1,1 h

- 3 Series Gran Turismo – Side frame: Simulation with line beads (Initial design).



-Number of elements: ~ 2.400.000
-Element size: 1,4 mm
-Computational time: 32CPUs: ~ 6,8 h

## LIMITING FACTORS FOR THE CURRENT SIMULATION SYSTEMS. EXAMPLES FROM ENGINEERING PROCESS.

#### Simulation of large models – daily engineering.

- 2 Series Gran Tourer – Side frame: Simulation with geom. drawbeads (Validation).



⇒ Simulation results for large forming models in the daily engineering process are available within 24h.

#### $\Rightarrow$ Software / Solver should continuously be optimized for available hardware.

Usage of LS-DYNA in metal forming. 10th European LS-DYNA Conference – 15. - 17.6.2015.

# TABLE OF CONTENTS.

- Introduction.

- Forming simulation at BMW State of the art.
- Limiting factors for the current simulation systems.
- Summary of current use of LS-DYNA.

- Future challenges.



## **SUMMARY OF CURRENT USE OF LS-DYNA.**

- Usage of LS-DYNA solver in cold forming and springback compensation in the daily tool-engineering is state of the art at BMW.
- Additional production processes are considered in the simulation models and these models are optimized continuously.
  - Simulation of indirect press hardening.
  - Draping of carbon fiber reinforced plastics.
  - Trimming simulation.
  - Etc.
- Limits of the simulation systems are permanently analyzed and if necessary, the simulation systems' capabilities are enhanced.

# TABLE OF CONTENTS.

- Introduction.

- Forming simulation at BMW State of the art.
- Limiting factors for the current simulation systems.
- Summary of current use of LS-DYNA.
- Future challenges.



## FUTURE CHALLENGES. PRODUCTION REQUIREMENTS.

- In the further production process, single parts are joined to the car body.
- The state of strain and stress of single parts is influenced by the joining operations which affects the springback of the entire assembly.
  - Simulating the assembly operation is important for the prediction of the final geometry of the assembly.



- Insertion of single parts.
- Modeling of spotwelds, weldlines and adhesives.
- Hemming simulation of the outer parts.









#### **Example of an assembly simulation - 5 Series Sedan trunk lid.**

- Springback simulation of prototype assembly.
  - Diagram: Deviation of simulation and target-geometry.



# ⇒ Simulation results enable adjustments and optimization of the assembly process.

## THANK YOU VERY MUCH FOR YOUR ATTENTION.

