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• Classical scheme of characterizing the yield behavior of a material

• Tensile test delivers engineering stress vs. strain curve for a specific reference length.

• Identification of material parameters via reverse engineering strategy, with which the test 

is simulated and the resulting stress strain curves were compared to the testing results.

Strain measurement

• Drawbacks:

• The area with the highest strains, the 

localization area, is not considered 

explicitly.



• Traditional method for the evaluation of tensile tests

• Engineering stress-strain curve with a predefined reference length (here: l0 = 9 mm)

Strain localization in DIC
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• Traditional method for the evaluation of tensile tests

• Engineering stress-strain curve for different reference lengths

Strain localization in DIC
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undeformed

deformed
 Infinite number of possible 

strain fields for a single 

stress-strain yield curve!

 Hence, the strain field may 

not be captured correctly.



Concept

Experiment Optimization Simulation

Input from 

experiment

Input from 

simulation

Measurement:

• Force

• Strain field

Objective:

identical strain fields in time

Simulated strain fieldMeasured strain field

Force vs. strain
Force vs. strain
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• ARAMIS v6

Strain calculation in ARAMIS

Visualization in ARAMIS

Schematic representation x-strain

Reference length of 

the strain calculation



• ARAMIS v6 vs ARAMIS Professional

Strain calculation in ARAMIS

𝑙0

The reference length 𝑙0 in any direction is 

determined by the mean length of the hexagon. 

(0.75*double_facet_point_distance )
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points
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• ARAMIS output – force vs. true strain  

Strain calculation in ARAMIS

Evaluation area

Tensile test
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Implementation of FFC with LS-OPT

1. Define multi-histories

3. Definition of axes

• New interface in LS-OPT

2. Insert load stages
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Implementation of FFC with LS-OPT

Possibility to visualize the 

alignment in LS-PrePost

Selection of the variables 

from the simulation

to be compared

Choose mapping method 

between test and simulation

• New interface in LS-OPT

Alignment of simulation 

and experiment
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• Validation of the anisotropic MAT_036 constitutive model

• Assumption in the simulation model:

• Anisotropic constitutive model: *MAT_036        

(*MAT_3-PARAMETER_BARLAT)

• Yield locus parameters assumed constant (not optimized at present) 

• Reducing the number of free parameters for the yield curve

• Damage and failure are not considered

• Material: sheet metal CR210IF

Proof of concept



𝐶1-continuity at Ag:

 Reduction of the function by two 

variables

• Parametrization of the yield curve

Proof of concept

Direct calculation of the yield curve until Ag

Extrapolation from Ag with  Hockett-Sherby 

Remaining variables c and n are 

chosen as optimization variables

c, n

Yield curve

extrapolationcalculation

Eng. stress-strain

c, n



• Purely virtual: Target strain field generated from simulation.

• Optimization strategy: Feed-forward neural network (FFNN)

Validation of method for MAT_BARLAT
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• Optimization results with FFNN for 0°

Validation of method for MAT_BARLAT
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• Optimization results with FFNN for 0°

Validation of method for MAT_BARLAT
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• Input: Curves from experiments w.r.t. the rolling direction (CR210IF)

MAT_BARLAT parameter optimization from experimental data
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• Optimization strategy: Sequential Response Surface Method (SRSM)

MAT_BARLAT parameter optimization from experimental data
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• Reason for differences – varying R-value, surface measurement,                 

shell assumptions

r00=1.283 = const. ?

MAT_BARLAT parameter optimization from experimental data



 3-parameter shell model: Kirchhoff-Love

(cross section straight and unstretched,

no shear deformations, i.e. normal to mid surface)

3 .a const

 5-parameter shell model: Reissner-Mindlin

(cross section straight and unstretched,

shear deformations possible)

3 .a const

3a artificial

 6- or 7-parameter shell model:

(cross section straight but stretchable)

 Higher order shell theory: multi-layer or -director:

(not straight and stretchable)

Shell theories / Shell models – limitations
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 3-parameter shell model: Kirchhoff-Love

(cross section straight and unstretched,

no shear deformations, i.e. normal to mid surface)

3 .a const

 5-parameter shell model: Reissner-Mindlin

(cross section straight and unstretched,

shear deformations possible)

3 .a const

3a artificial

 6- or 7-parameter shell model:

(cross section straight but stretchable)

 Higher order shell theory: multi-layer or -director:

(not straight and stretchable)

Shell theories / Shell models – limitations

Reduced constitutive models 
(2D „plane stress“)

Full 3D constitutive models 



 3-parameter shell model: Kirchhoff-Love

(cross section straight and unstretched,

no shear deformations, i.e. normal to mid surface)

3 .a const

 5-parameter shell model: Reissner-Mindlin

(cross section straight and unstretched,

shear deformations possible)

3 .a const

3a artificial

 6- or 7-parameter shell model:

(cross section straight but stretchable)

 Higher order shell theory: multi-layer or -director:

(not straight and stretchable)

Loading of top or bottom shell 
surface not possible!

DOF for loading of surface 
available and supported!
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Shell vs. solid: Tension test

–– Fracture curve

–– Element #1

–– Element #2

Element #2
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Comparison with a finite element model with small volume elements

–– Fracture curve

–– Element #1

–– Element #2



No plane sections: mini tension test coupon with MAT_24 

Solids t=0.5mm Solids t=1.0mm Solids t=2.0mm Solids t=3.0mmShells t=1.0mm

∆ Shells

t=0.5mm

t=1.0mm

t=2.0mm

t=3.0mm

Le=0.125mm

L
o
d
e
 p

a
ra

m
e
te

r

TriaxialityEngineering strain

E
n
g
in

e
e
ri

n
g
 s

tr
e
s
s

Contours of plastic strain.[etyp=16]

The limits of classical shell models



Shell 
Solid Solid-shell 

??

steel

cast aluminium

aluminium sheets

extruded aluminium
sheet metal

Shell elements work very well for 

thin structures!

Caution required if 

• extremely small bending radii

• strong lateral loading and high 

lateral stresses

• damage, localization and 

rupture

Parameter identification: Transition from shells to solids? 
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• Clearly, yield curve extrapolation is depending on reference length. 

• Hence many possible solutions for global force vs. displacement behavior.

• Implementation of FFC interface in LS-OPT to facilitate application of method.

• Method was validated with numerical, artificial data for Barlat-model.

• Method was applied to measured data of CR210IF and Barlat-model.

• It can be concluded that the approach delivers sufficiently close results 

w.r.t. the posed question: 

Keep in mind a spatial model as well a constitutive model 

are applied to represent reality. 

The limits of the classical discretization with shells 

may sometimes be closer than expected!

Summary & conclusions



• Increasing the number of parameters to be optimized

• More complex approach for yield curve extrapolation.

• 2-3 additional parameters for the yield locus.

• Investigation of different specimen geometries may be worthwhile

Outlook

The multi-point history option will be available in LS-OPT in next release.



Your questions, please


