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Summary:  
 

In the context of isogeometric analysis many research activities have focused on the use of Non-
Uniform Rational B-Splines (NURBS). These NURBS-based finite elements have been studied in 
depth and it has been shown, that they are particularly well suited for computational analysis leading 
to qualitatively more accurate results in comparison with standard finite elements based on Lagrange 
polynomials. Due to these motivating results, NURBS-based finite elements are currently implemented 
into LS-DYNA. 

This work outlines the basic ideas of isogeometric analysis and gives a short introduction into NURBS 
basis functions. The new keyword *ELEMENT_NURBS_PATCH_2D available in LS-DYNA is 
presented together with various possible options, like shell theories with and without rotational 
degrees of freedom. Preliminary results on the performance of these new elements are studied by 
means of a sheet metal forming example discussed in the Numisheet conference 2005. 
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1 Introduction 

The goal of integrating computer aided design (CAD) and finite element analysis (FEA) has led to a 
new computational method called Isogeometric Analysis (IGA). Its main idea is to use the same 
mathematical description for the geometry in the design (CAD) and the analysis (FEA). Much of the 
recent research on isogeometric analysis uses Non-Uniform Rational B-Splines (NURBS) as basis 
functions, as this geometrical representation is the most widely used in engineering design systems. It 
has been shown that NURBS-based finite elements are very well suited for computational analysis 
leading to qualitatively more accurate results in comparison with standard finite elements based on 
Lagrange polynomials. Due to these motivating results, NURBS-based finite elements are currently 
implemented into LS-DYNA. 

The paper will be organized as follows:   

In section 2 the basic ideas of isogeometric analysis will be presented followed by a short introduction 
into NURBS. Section 3 describes how to define a NURBS patch with the new keyword 
*ELEMENT_NURBS_PATCH_2D and explains the characteristics of interpolation-nodes and  
-elements. Preliminary results of the NURBS-based finite elements in LS-DYNA will be discussed by 
means of a sheet metal forming example taken from the Numisheet 2005 conference in section 4. 
Section 5 closes with some conclusions and an outlook. 

2 Isogeometric analysis with NURBS 

In this section a rough overview about isogeometric analysis will be given followed by a short 
introduction into NURBS. This outline is far from being complete and the interested reader is referred 
to the interesting textbook of Cottrell et al. [1] for isogeometric analysis and the monograph by Piegel 
and Tiller [2] for the details on NURBS. 

2.1 Isogeometric analysis in short 

2.1.1 Motivation 

The initial motivation to come up with isogeometric analysis was the wish to reduce the amount of 
work spent to convert the geometry description from computer aided design (CAD) into a suitable 
mesh for finite element analysis (FEA). While the CAD community uses geometry descriptions like e.g. 
NURBS, subdivision surfaces, T-splines or others, the FEA community generally uses linear Lagrange 
polynomials to approximate the geometry. This necessitates a re-parameterization of the CAD 
geometry which is labor cost intensive and results in most cases in a certain amount of discretization 
errors. The basic idea of isogeometric analysis is to use the same geometry description in design and 
analysis. In 2003 the research on isogeometric analysis started to focus on the question if finite 
element analysis could be done with non-uniform rational B-splines (NURBS), the most widely used 
geometry description in commercial CAD programs. The first promising results of these studies were 
presented in 2005 [3]. Since then, much research has been done on various topics of FEA (e.g. linear 
and non-linear static and dynamic analysis of thin-walled structures, fluid mechanics, fluid structure 
interaction, shape and topology optimization, vibration analysis, buckling and others) where many 
studies were using NURBS as basis functions. A very interesting introduction to isogeometric analysis 
can be found in [1].  

2.1.2 Definition 

The term “isogeometric analysis” is not restricted to any special type of basis functions. It just indicates 
that the geometrical description that is used for FEA is the same than was used in CAD before. In 
analogy to the well known term “isoparametric” in FEA, the name “isogeometric” is chosen. In Fig. 1 
these two notions are given side by side.  

 
Fig. 1: Isoparametric vs. Isogeometric 
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2.2 From B-splines to NURBS 

Various studies have shown that NURBS basis functions are particularly well suited for FEA and 
therefore a rough overview on B-Splines and NURBS will be given in the following. 

2.2.1 B-spline basis functions 

B-spline basis functions (see Fig. 2) are constructed recursively until the desired polynomial degree of 
the functions is reached (see Equ. (1)).  

 
Fig. 2: B-spline basis functions of order 0, 1 and 2 for uniform knot vector [1] 

A key ingredient for the recursion formula is the so-called “knot-vector”
 1 2 1, , ..., n pξ ξ ξ + + Ξ =   , which is a 

non-decreasing set of coordinates in the parameter space, where iξ  is the ith knot, p  is the polynomial 

order and n  is the number of basis functions.  
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In contrast to the widely used Lagrange polynomials in FEA, B-spline basis functions are always 
positive regardless of their polynomial order. Furthermore they constitute the important partition of 
unity property and in absence of multiple knot values in the knot-vector they exhibit a Cp-1-continuity 
along the internal element boundaries (knot values). 

2.2.2 B-spline curves 

The creation of B-spline curves is similar to standard FEA. Instead of nodal coordinates in classical 
FEA, so-called control points iB  are used as coefficients of the B-spline basis functions. It is important 
to point out that the control points, in opposition to the nodal coordinates, are normally not a part of the 
actual geometry. This comes from the non-interpolatory nature of the B-spline basis functions. Taking 
a linear combination of the B-spline basis functions with the corresponding control points defines a B-
spline curve ( )ξC . 
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A typical B-spline curve is shown in Fig. 3 together with the control points, the resulting control 
polygon and the B-spline basis functions. 

 
Fig. 3: B-spline curve with control points, knots and associated B-spline basis functions [1] 
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2.2.3 Refinements 

Various types of refinements exist for B-spline curves without changing the initial curve, namely h-, p- 
and k-refinement. While h-  and p-refinement can be directly compared to classical FEA, k-refinement 
displays an additional refinement possibility when using B-spline basis functions, which allows to 
generate a higher order of continuity.  

2.2.4 NURBS 

The main issue to go from B-splines to NURBS is the fact that a wide range of geometrical objects can 
be exactly represented with NURBS. A NURBS is constructed by a projective transformation of a B-
spline. Technically this is achieved by introducing weights at the control points that allows more control 
over the actual shape of the NURBS. The NURBS basis functions ( )p

iR ξ  are computed by multiplying 

the B-spline basis functions with the appropriate weights iw  and dividing the product by the weighting 

function ( )W ξ . 
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A NURBS curve is then represented in the same way as a B-spline curve by taking a linear 
combination of the NURBS basis functions with the associated control points. 
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In Fig. 4 a two NURBS curves are shown that differ only in the value of the weight at the 9th control 
point. 

 
Fig. 4: NURBS curves with identical control points and knot-vectors - only difference weight 

Up to now, only 1D curves have been discussed, whereas most of the applications as well in CAD as 
in FEA use 2D surfaces in space. The construction of NURBS surfaces is straightforward using a 
tensor product structure based on 1D basis functions to define the necessary basis functions. 
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A NURBS surface is then again defined through a linear combination of these basis functions with the 
connected control points. Further details on the construction of NURBS surfaces, the derivatives of 
NURBS basis functions, useful algorithms and much more can be found in the monograph by Piegl 
and Tiller [2]. 

3 FEA with NURBS for thin-walled structures in LS-D YNA 

The following section will introduce the new keyword *ELEMENT_NURBS_PATCH_2D and the 
present possibilities in LS-DYNA to use isogeometric analysis. 

3.1 A typical NURBS-patch 

As indicated before, the definition of a NURBS surface necessitates a set of NURBS basis functions 
and associated control points with proper weights. The set of control points is called a control net (or 
control grid), which is similar to a finite element mesh with the very important difference, that the 
individual control points are normally not a part of the actual geometry. Another difference to the 
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definition of a classical finite element, a NURBS surface is described rather through a so-called 
NURBS-patch than through individual elements. A typical definition of a NURBS-patch using the new 
keyword *ELEMENT_NURBS_PATCH_2D is depicted in Fig. 5 together with the resulting subdivision 
into “finite elements”.  

 
Fig. 5: The keyword *ELEMENT_NURBS_PATCH_2D in LS-DYNA 

In this particular example, quadratic NURBS basis functions are chosen in local r- and s-direction. This 
leads to 9-noded quadratic “finite elements” for the analysis which are C1-continuous along the 
element boundaries. Standard finite elements based on Lagrange polynomials are always C0-
continuous along the element boundaries. The higher continuity of the “NURBS-finite-elements” 
originates from the non-interpolatory nature of the NURBS-basis functions and leads to an overlap of 
control points of adjacent elements. 

There is no limit in the size of a NURBS-patch definition within the keyword 
*ELEMENT_NURBS_PATCH_2D, such that the parameters NPR (number of control points in local r-
direction), NPS (number of control points in local s-direction), PR (polynomial order in local r-direction) 
and PS (polynomial order in local s-direction) define the actual size of this keyword. The necessary 
knot-vectors are defined in the parameters RK and SK and the connectivity of the whole NURBS-
patch follows afterwards.  

3.2 Interpolation-nodes and -elements 

Up to now, the contact treatment as well as the post-processing of the NURBS-finite elements in LS-
DYNA is based on so-called interpolation-nodes and –elements. The idea is to superimpose a 
standard bi-linear mesh on top of each NURBS-finite-element by generating interpolation-nodes 
placed on the real surface. In Fig. 6 the result of an automatic generation of interpolation-nodes and  
-elements is shown for the marked NURBS-element. With the parameters NISR and NISS (number of 
interpolation shells in local r/s-direction per NURBS-element) the user can specify the mesh density of 
the resulting interpolation elements. The term interpolation indicates that the constructed interpolation 
nodes are dependent nodes with respect to the control points. Their particular position is interpolated 
on basis of the actual location of the control points by using the corresponding NURBS-basis 
functions. In case of contact, the contact forces evaluated at the interpolation nodes will be 
extrapolated to equivalent forces at the primary variables at the control points. Therefore the mesh 
density of the interpolation elements will not have any influence on the time step size nor on the 
overall number of degrees of freedom.  
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Fig. 6: Interpolation-nodes and -elements 

3.3 Available shell formulations 

At present four different shell formulations are available in LS-DYNA to use with the new NURBS- 
based finite elements. They can be chosen under the parameter FORM in the keyword 
*ELEMENT_NURBS_PATCH_2D, with the following code: 

- 0: “shear deformable theory” with rotational degrees of freedom [4] 

- 1: “shear deformable theory” without rotational degrees of freedom [5] 

- 2: “thin shell theory” without rotational degrees of freedom 

- 3: “thin shell theory” with rotational degrees of freedom 

The shear deformable theory is based on the degenerated solid element formulation [6]. The 
kinematics is defined in terms of the nodal coordinates at the reference lamina of the shell, and a unit 
orientation vector, ˆ y , which we take to be the unit normal as in the Belytschko-Tsay [7] element,  

( )2
ˆ( , , ) ( , ) h

i i i
i

x N x yη ξ ζ η ξ ζ= +∑                                     (6) 

and the velocity is expressed as 

( )2
ˆ( , , ) ( , ) .h

i i i
i

x N x yη ξ ζ η ξ ζ= +∑ && &                                   (7) 

The formulations with and without rotations differ only in the expression of the time derivative of the 
unit orientation vector. With rotations, the derivative is 

ˆ ˆi i iy yω= ×&                                   (8) 

where ω i  is the angular velocity at the control point, and, for the formulation without rotations, the rate 
is obtained by differentiating the expression for the orientation vector as a function of the control point 
coordinates with time,  

ˆ
ˆ .i

i j
j j

y
y x

x

∂
∂

=∑& &                                       (9) 

The thin shell formulation is similar, however, the normal vector is evaluated at the current point on the 
reference lamina,  

2
ˆ( , , ) ( , ) ( , ).h

i i
i

x N x nη ξ ζ η ξ ζ η ξ= +∑                                       (10) 
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Differentiating with time gives the velocity, 

2
ˆ( , , ) ( , ) ( , ).h

i i
i

x N x nη ξ ζ η ξ ζ η ξ= +∑ && &                                 (11) 

As with the shear deformable theory, implementations with and without rotations are created based on 
the how the time derivative of the normal is evaluated. 

For the formulations that are rotation free, the basis functions must have first derivatives that are 
continuous across the element boundaries to correctly transmit the moments between adjacent 
elements. 

Due to the generally higher continuity of the NURBS-finite elements it is possible to use rotation free 
shell formulations. This leads to a significant reduction of global degrees of freedom and automatically 
removes possible problems with the treatment of rotational inertias of classical shell formulations. 

3.4 Analysis capabilities 

Several analysis capabilities are already implemented for the new NURBS-based finite elements in 
LS-DYNA, like: 

- implicit and explicit time integration 
- eigenvalue analysis 
- many material models from the LS-DYNA material library are available 

4 Preliminary results – Numisheet-Benchmark 2005 

Some preliminary results with the NURBS-based finite elements in LS-DYNA will be presented in the 
following by means of a sheet metal forming application. 

4.1 Example setup 

The Numisheet 2005 Benchmark on “Forming of an Automotive Underbody Cross Member” (BM2) [8] 
has been chosen to study the performance of the new NURBS-based finite elements in LS-DYNA. In 
Fig. 7 the setup of the forming process for the underbody cross member is shown.  

The numerical simulation of this problem using fully integrated standard shell elements (ELFORM=16) 
with three possible steps of adaptive refinement (4mm � 2mm � 1mm) was chosen as reference 
solution. 

 

 
Fig. 7: Numisheet 2005 - BM2 setup 
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To compare the performance of the NURBS-based finite elements, this example was computed with 
different configurations of mesh sizes and polynomial orders. A summary of all analyzed 
configurations is given in Table 1. The model setup for the standard shell elements and the NURBS-
based finite elements only differ in the discretization of the blank. All the numerical simulations were 
performed using the material model *MAT_TRANSVERSELY_ANISOTROPIC_ELASTIC_PLASTIC 
(*MAT_037) with five integration points through the thickness of the shells. No thickness update was 
taken into account (istupd=0) and no mass scaling was considered. The computations were run on a 
Dual Core AMD Opteron, 2.2 GHz in SMP, double precision with ncpu=4.  

The behavior of the NURBS-finite elements was compared with the results achieved with fully 
integrated standard shell elements (ELFORM=16). 

 Fully integrated linear shell elements 
(ELFORM=16) 

2D NURBS finite elements 
(FORM=2, rotation free) 

Reference solution Adaptivity (4mm � 2mm � 1mm) -------------------- 

Discretizations 8mm 

4mm 

2mm 

16mm 

8mm 

4mm 

Polynomial order P=1 (linear)                 P=2 (quadratic) 

                P=3 (cubic) 

                P=4 (quartic) 

                P=5 (quantic) 

Table 1: Overview about different computations 

4.2 Comparison 

The quality of the results is compared on basis of the final draw-in of the blank at six different positions 
(see Fig. 8). 

 
Fig. 8: Measured draw-in positions 

The results for the draw-in length for all analyzed configurations are depicted in Fig. 9. Good results 
with respect to the reference solution (standard shell elements with adaptivity) are achieved with 
standard shell elements with an average element size of 2mm and with NURBS-based shell elements 
with an average element size of 4mm. Larger mesh sizes lead to a rather stiff behavior on the left side 
which is indicated by less draw-in. Furthermore it can be realized, that for this particular example, a 
higher polynomial order will not lead to better results. This can be explained by the fact, that the 
spacing of the control points will not change significantly when going to higher order polynomials and 
the maximum spacing of the control points to achieve qualitatively good results is dictated by the 
radius of the drawbead (approximately 4mm, see Fig. 7). 
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Fig. 9: Comparison of draw-in at measured positions 

Besides the draw-in measurements the total contact forces in the interface between the upper die and 
the blank are compared. The results shown in Fig. 10 confirm the general behavior noticed in the 
draw-in comparisons. NURBS-based shell elements with an average mesh size of 4mm exhibit a 
qualitatively comparable result as standard linear shell elements with an average mesh size of 2mm. 

 
Fig. 10: Comparison of contact forces between upper die and blank  

On top of the qualitative comparisons, the necessary CPU-time is one of the most important issues. 
The results in Fig. 11 show that the analysis with quadratic NURBS elements with a mesh size of 4mm 
(P2-4mm) runs about 30% faster than the one with linear standard shell elements with a mesh size of 
2mm (Std-2mm). Furthermore it can be seen that raising the polynomial order of the elements will lead 
to an increase in computation cost of factor 2.5-3.0 (see for example P2-4mm � P3-4mm � P4-4mm 
in Fig. 11). 
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Fig. 11: Comparison of necessary CPU-time 

4.3 Summary 

This particular example has shown that NURBS shell elements will lead to qualitatively as good results 
as a comparable discretization with standard linear finite elements (e.g. P2-4mm � Std-2mm) and 
that they are cost competitive. The same accuracy of the results can be obtained with 2/3 the CPU 
time. Note that this comparison is based on an early stage of the implementation of the NURBS-based 
finite elements in LS-DYNA where nearly no effort has been spent on CODE optimization whereas the 
implementation of the standard finite elements has been highly optimized during the last years. 
Therefore this result is even more promising. 

5 Conclusion and Outlook 

The basic ideas of isogeometric analysis have been introduced along with a rough overview about B-
splines and NURBS. The new keyword *ELEMENT_NURBS_PATCH_2D that allows to perform 
isogeometric analysis with LS-DYNA was discussed. Preliminary results with the new NURBS-based 
finite elements have shown that the current implementation runs stable and that higher order accurate 
isogeometric analysis can be cost competitive even without a heavily optimized implementation. 
 
A lot more studies need to be performed to figure out the areas in which NURBS-based finite elements 
could be the first choice in future FEA. Furthermore the present implementation needs to be optimized 
and parallelized to make them work in MPP. Many features available for standard finite elements in 
LS-DYNA need to be added for the NURBS-based finite elements in the near future. 
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