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Introduction 
 
A constitutive equation for chronorheologically simple materials that describes the 
aging and viscoelastic behaviors of elastomer is presented. A simulated numerical 
uniaxial relaxation test of a material at various aging stages has been performed.  
The simulated experimental results demonstrate the chronorheological effect and 
are used further to determine the material property functions in the constitutive 
equation.  A test of an elastomer at various aging stages has been performed.  It 
demonstrated the same effect as the simulated numerical example. 
 
The applications of this constitutive equation to dummy impact programs are 
mentioned. 
 
Chronorheologically Constitutive Equation 
 
For viscoelastic highly compressible constitutive equations, the principal Cauchy 
stresses are given by Feng and Hallquist [1] 
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The material constants Cj , b j  and n  can be determined from long-term test 
data (t = ∞ ) and g j (t)  can be determined from relaxation test data.  For 
uniaxial tension or compression tests, t2 = t3 = 0, and λ 2 = λ 3, we have  
 
 λ 3 = λ 1

−n 2n +1( ) .         (2) 
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Hence, the constant n  can be easily determined from the relationships 
between stretch ratios test data.  The material constants Cj  and b j  can be 
determined from relationships between the Cauchy stress and stretch ratio. 
 
The relaxation functions can be taken as a series of exponential functions.  
In order to reduce the number of constants that must be determined, the 
relaxation functions are assumed in the following form: 
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This equation also relates the viscoelastic properties with the elastic 
properties through the constants Cj .  The material constants mR  are 
dimensionless and γ m  are decay constants. Hence, 
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In this paper it is postulated that the mathematical form is preserved in the 
constitutive equation for aging; however, two new material functions, )( aj tC′  

and ),( ttG aj′  are introduced to replace jC  and ( )tG j .  The aging time is 

denoted by at . 
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These four functions are further related by: 
 

 jaaj CttC )()( α=′  

 
 [ ]ttGttG ajaj )(),( β=′                 (6) 

 
where )( atα  and )( atβ  are two new material properties that are functions of the 
aging time at .  The material properties functions )( atα  and )( atβ  will be determined 



with the experimental results.  For determination of )( atα  and )( atβ , Equation (2) 
can be written in the following form 
 
 ),0(log)(log),(log ξα →=+= ttttttt aiaai      

tta log)(loglog += βξ         (7) 
 
Therefore, if one plots the stress versus time on log-log scales, with the vertical 
axis being the stress and the horizontal axis being the time, then the stress-
relaxation curve for any aged time history can be obtained directly from the stress-
relaxation curve at 0=at  by imposing a vertical shift and a horizontal shift on the 
stress-relaxation curves.  The vertical shift and the horizontal shift are )(log atα  and 

)(log atβ  respectively. 
 
Examples 
 
Following are two examples, one for the numerical simulation, and one for 
the uniaxial test results of a softening material: 
 
The first, a numerical simulation of aging tests, is shown in Figure 1. 

 
 

Figure 1,  Numerical simulation of an aging test 
 



After the vertical and horizontal shifts, the master curve where all aging test 
data collapse into a single curve, with 0=at  as a reference, is shown in 
Figure 2. 
 

 
 

Figure 2,  The master curve of the aging test, shown in Figure 1 
 

The values for ( )atα  and ( )atβ  at various aging times are: 
 

    ( )atα                 ( )atβ  
                       0=at            1.00E+00     0.1000E+01 
 ( )1at            1.25E+00     0.5000E+00     

( )2at            1.50E+00     0.1000E+00 
( )3at            2.00E+00     0.5000E-01 

 
The values for ( )atα  and ( )atβ  between these aging times can be obtained 
from extrapolation between two adjacent values.   
 
The second example is from uniaxial aging tests of a softening material; the 
material softens while aging.  It is obtained from uniaxial-tension-relaxation 
tests.  The force-time histories of these relaxation tests are shown in 
Figure 3.  All test conditions are the same, except at various aging times. 
 



 
Figure 3,  Uniaxial tensile tests of an elastomer at various aging times  

 
Figure 4,  The values of the aging material properties, αlog  and βlog , versus 

the aging time at  
 

The same method illustrated in example 1 is applied here.  The values of the 
aging material properties, αlog  and βlog , versus the aging time at  are 
shown in Figure 4. 



Dummy program at LSTC  
 
Examples of LSTC’s dummy program are shown in Figures 5a and 5b. Both 
show the SID IIs dummy model. In Figure 5a the thorax impact calibration 
test is pictured. In Figure 5b the neck pendulum calibration test is shown. 
 

 
 

Figure 5a, Thorax impact test Figure 5b, Neck pendulum test 
 

 
 

 
Figure 6,  The creep test result of a foam used in the LSTC dummy program 



 
The creep test result of a typical foam used in the LSTC dummy program is 
shown in Figure 6.  It shows the viscoelastic behavior.  Further analysis to 
determine the relaxation is shown in Figure 7.  From the creep and 
relaxation phenomena the aging will affect these materials just as shown in 
examples 1 and 2. 
 

 
Figure 7,   The relaxation of a foam, at 0.315 compressive strain, used in the 

LSTC dummy program 
 
Future work 
 
Figure 8 displays sample comparisons of results from physical dummy 
calibration tests and calibration tests run with LSTC’s SID IIs dummy model 
in LS-DYNA. The pictured results are from the neck pendulum calibration 
test shown in Figure 5b. They describe the angle between the pendulum arm 
and the headform replacement mass at the end of the neck, as well as the 
moment at the Occipital Condyle, the joint between the upper end of the 
spine and the head colored in blue in Figure 5b. 
 
Although the correlations between LS-DYNA and the test for LSTC’s 
dummy program are good as shown in Figure 8, the material used in 
constructing dummies will change with aging.  Therefore it is important to 
know the aging properties of these materials. 
 



  
Figure 8a, Neck bending angle Figure 8b, Occipital Condyle moment 

 
 
Several years ago, Toyota proposed studying the human dummy program.  
They proposed studying many human organs, as shown in Figure 9.  Aging 
affects the mechanical properties of human organs greatly.  Thus the 
chronorheological constitutive equation may be applied to that program as 
well. 
 

 
 

Figure 9, THUMS AM50 occupant model with individual internal organs 
 
Conclusions 
 
The interpretation of the chronorheological properties of an elastomer has 
been obtained.  The constitutive equation is shown in this report.  A method 
for determining the aging properties is also presented.  In the formulation, 
the geometric nonlinearity as well as the material nonlinearity is included.  



The method described in this report can be extended readily to other types of 
aging and to other types of viscoelastic constitutive equations. 
 
The beauty of this method is that the aging material functions ( )atα  and ( )atβ  
can be obtained from any test method.  They can be obtained from force-, or 
stress-relaxation curves for uniaxial tests; they can be obtained from 
pressure-relaxation biaxial tests; they can be obtained from other relaxation 
tests and creep tests as well. 
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