
7th European LS-DYNA Conference 
 

 
© 2009 Copyright by DYNAmore GmbH 

 

Performance of the Hybrid LS-DYNA on Crash 
Simulation with the Multicore Architecture 

 
Yih-Yih Lin1, Jason Wang2 

1 Hewlett-Packard Company, Marlborough, MA, USA 
2 Livermore Software Technology Corporation, Livermore, CA, USA 

 

 

Summary: 
 
Using crash simulation models, we investigate the multicore performance of the newly developed 
hybrid LS-DYNA, a method whose speedup arises from both shared-memory and message-passing 
parallelisms. Theoretically, the hybrid method gains performance advantages over the traditional, 
message-passing-parallel (MPP) LS-DYNA for two reasons.  First, the addition of shared-memory 
parallelism to the message-passing parallelism reduces the number of messages and their sizes 
dramatically, which in turn reduces latency and bandwidth requirements on interconnect.  Second, the 
same addition enhances spatial and temporal localities for both code and data accesses, which in turn 
allows the size-limited cache to work more efficiently. Armed with this theory, we characterize 
performance of the hybrid method with respect to problem size, core count, core placement, and 
interconnect speed; thus provide users guidance on when and how to use the hybrid method 
efficiently. We also attempt to verify the theory by examining message patterns and the effect of core 
placement. 
 
 
 
 
 
 
 

 
 
 
 
 
Keywords: 
 
Hybrid LS-DYNA, Performance, Multicore Architecture 



7th European LS-DYNA Conference 
 

 
© 2009 Copyright by DYNAmore GmbH 

1 Introduction 

1.1 A brief history of LS-DYNA parallelism 

When DYNA3D, the LS-DYNA precursor, first developed in 1976 [1], all commercial computers were 
built with uniprocessor architecture; consequently, it did not implement any process-level parallelism 
and ran serially. By 1989, the year the first version of LS-DYNA appeared, several commercial 
computers with multiprocessor architecture had already been available, and the shared memory 
parallelism (SMP) was implemented in LS-DYNA, whose posterior releases have been known as the 
version of SMP LS-DYNA since. However, the scalability of the SMP LS-DYNA was observed to stop 
at 8 processors. To solve the limitation of the share memory parallelism, LSTC began to implement 
distributed memory parallelism in LS-DYNA, using the software MPI (message passing interface) 
library; distributed memory parallelism implemented with message passing paradigm is customarily 
called as the message passing parallelism. The first version of LS-DYNA with message passing 
parallelism, called MPP (Massively Parallel) LS-DYNA, was released in 1993. Since then, MPP LS-
DYNA has been observed with scalability up to hundreds and even thousands of processors. 
However, it has been observed that interconnect speed is a significant limiting factor in the scalability 
of MPP LS-DYNA. Interconnect speed is determined by its latency and bandwidth: the lower the 
latency and the higher the bandwidth is, the faster MPP LS-DYNA performs. To reduce MPP LS-
DYNA’s requirement on low latency and high bandwidth on interconnect, LSTC about a year ago 
began to implement the hybrid method that combines both the shared memory (as in SMP LS-DYNA) 
and the message passing (as in MPP LS-DYNA) parallelisms. As to be shown later, the hybrid method 
indeed has achieved significant performance improvement over the traditional MPP LS-DYNA. 

1.2 The shared memory and the message passing parallelisms and their hybrid 

In computer terminology, a core is the central processing unit, which has a minimal memory 
infrastructure that includes caches. A process is a program operating in an address space that is not 
shared by other processes. Multiple processes can be spawned by a single core. A thread is an 
executing program that is created from a process and operates in the process’ address space; several 
threads, all sharing the same address space, can be contained in a single process.  An application is 
said to be shared memory parallel if each of its cooperating subprograms, has access to all of a 
single, shared address space for memory operations. The majority of modern shared memory parallel 
programs are implemented with threads, and so is SMP LS-DYNA.  
 
An application is said to be distributed memory parallel if it comprises a set of cooperating processes, 
each of which operates on unshared (local) memory, but each of which is able to communicate its 
local information with other processes. The best known method for communication among processes 
is by sending and receiving messages, for which the Message Passing Interface (MPI) Library is the 
standard software tool. As mentioned earlier, distributed memory parallelism implemented with 
message passing paradigm is customarily called message passing parallelism. Since its inception, 
MPP LS-DYNA has been implemented with the MPI Library, and therefore it is also called the pure 
MPI method in this paper. 
 
In addition to the finite element method, MPP LS-DYNA is based on the domain decomposition 
method. In the method, the problem is split into small problems on subdomains. Each smaller problem 
on a subdomain is solved independently, but serially by a distinct process (called rank in MPI), and its 
solution is periodically coordinated with solutions on other subdomains via MPI. In contrast, if each 
smaller problem is solved with multiple threads, created by its associated MPI rank, then the method is 
called the hybrid method. Those multiple threads are called SMP threads. Both the traditional MPP 
LS-DYNA and the hybrid method are called collectively as the MPI method in this paper. 

1.3 Multiprocessor, multicore architecture 

The term core is a recent one. Historically, a processor had one and only one central processing unit, 
and there was no need to call it with another name. However, processors with multiple processing 
units were invented recently and have become prevailing in the industry, and so the term core has 
been reserved for calling a central processing unit; that way, a processor with two central processing 
units can be simply called a dualcore processor, with four central processing units a quadcore 
processor, and so on. 
 



7th European LS-DYNA Conference 
 

 
© 2009 Copyright by DYNAmore GmbH 

Multiple multicore processors have been organized to make a node, in which all its processors, and 
hence all their cores, share a global memory. Multiple nodes are further interconnected to make a 
cluster, in which all nodes, and hence all their cores, can communicate. Consequently, the SMP LS-
DYNA can be run only on a single node. In contrast, both the pure MPI method and the hybrid method 
can be run on a single node or on a cluster.  

1.4 Communication and computation costs 

Performances of the MPI method are determined by computation and communication costs. 
Communication cost is the messaging passing cost incurred for iteratively coordinating solutions on 
subdomains. Each solution on a subdomain, solved either serially or by multiple threads, incurs a cost; 
their maximum is computation cost. Communication cost is determined by latency and bandwidth of 
interconnect, which is the conduit for message passing. On the other hand, with a given computer 
architecture, computation cost is primarily affected by memory access speed, which in turn is affected 
by CPU affinity and core placement, from users’ perspective. CPU affinity is the tendency of a process 
or a thread to run on a core as long as possible without being moved out to some other core, and core 
placement means simply which core is run on. For serial or SMP LS-DYNA, CPU affinity with 
appropriate core placement is almost always beneficial to its performance, but inappropriate core 
placement can degrade it, sometimes greatly. 
 

2 Performances of the pure MPI method and the hybrid method 

2.1 Models, LS-DYNA versions and cluster systems 

The car2car model, which is based on NCAC minivan model and is available on the TopCrunch site 
http://www.topcrunch.org, is the main problem used in this investigation. The model comprises 2.4 
million elements and has a termination time of 120 ms. Additionally, the 0.8-million-element 3-vehicle-
collision model, also available on the TopCrunch site, is used, but only in Section 3.4 to demonstrate 
that the hybrid method gains no performance advantage over the pure MPI method when the problem 
size is small.  
 
Tests are performed with MPP LS-DYNA Version R4.2, using HP-MPI, and its corresponding version 
of the hybrid method.  
 
Benchmarks are run on two clusters: One comprises nodes containing two of the newly released 
Nehalem processors, and the other comprises the HP BL2x220c nodes containing two Xeon 
Harpertown processors. A summary of the hardware configuration for the two clusters is shown below. 
 
Node type Intel Nehalem white box HP BL2x220c  
Architecture Xeon X5560 

(quadcore) (2.8 GHz)  
Xeon E5450 (Harpertown) 
(quadcore) (3.0 GHz)  

Processors/Cores 
       per node 

2 processors/8cores 
       per node 

2 processors/8cores 
        per node 

Highest level cache 
size per processor 

8 MB 12 MB 

Cache Configuration One 8 MB L3 cache shared 
among 4 cores, containing 
memory controller 

Two 6 MB L2 caches, each shared 
between 2 cores, requiring separate 
memory controller 

Memory per node 18 GB 16 GB 
Interconnect InfiniBand QDR InfiniBand DDR 
O/S RH 5.3 SLES 10.2 
 
The left diagram in Figure 1 depicts the cache structure of the Nehalem processor, while the right one 
depicts that of the Harpertown processor. Three differences in the two cache structures are noticed:  
 

• The Nehalem has 2 MB cache per core, while the Harpertown has 3 MB per core. 
• All 4 cores share one same cache in the Nehalem, while one pair of cores shares one cache 

and the other pair shares another in the Harpertown. 
• The Nehalem contains the memory controller, while the Harpertown requires a separate 

memory controller. 



7th European LS-DYNA Conference 
 

 
© 2009 Copyright by DYNAmore GmbH 

How these differences in cache structures affect the performance of the hybrid method will be 
discussed later. 

 
Figure 1: The cache structures of the Nehalem processor and the Harpertown processor 

2.2 Results 

Figure 2 shows 256-core performances of the pure MPI method and the hybrid method (with 4 SMP 
threads) and their comparisons on the Nehalem cluster. Figure 3 shows 256-core performances with 
varying number of threads on the HP BL2x220c cluster. Figure 4 shows performances of the two 
methods, and their comparisons, with varying core counts from 32 to 512 on the HP BL2x220c cluster.  
These three figures give out the following three main results for the investigation: 
 

• The hybrid method obtains a performance gain of 1.20X over the pure MPI method with 256 
cores. 

• The best performance is achieved when the number of threads is equal 4, which is the number 
of cores per processor. 

• The hybrid method begins to gain performance over the pure MPI method when the core 
count exceeds 128. 

 

 
 

Figure 2: 256-core elapsed times of the pure MPI method and the hybrid method, and their 
comparison, on the Nehalem cluster 

Core 

8MB Shared Cache 

 Memory   
Controller    

Two 
QuickPath 

Links  

3 DDR3 
Channels 

Link            
Controller 

Core Core Core Core 

6MB Shared 
Cache

6MB Shared 
Cache 

Core CoreCore

Harpertown 
Nehalem 



7th European LS-DYNA Conference 
 

 
© 2009 Copyright by DYNAmore GmbH 

 
 
Figure 3: 256-core elapsed times of the pure MPI method and the hybrid method, and their 
comparisons, with varying numbers of SMP threads on the Nehalem cluster 

 

 
 

Figure 4: Elapsed times of the pure MPI method and the hybrid method, and their comparison, with 
varying core counts from 32 to 512 on the HP BL2x220c cluster.     * With 4 SMP threads 



7th European LS-DYNA Conference 
 

 
© 2009 Copyright by DYNAmore GmbH 

3 Discussion 

3.1 Communication and computing costs 

As mentioned before, performance of an MPI method is determined by communication and 
computation costs; therefore, we will discuss factors affecting performance of the hybrid method along 
this division. 

3.1.1 Communication cost 

The reason that the hybrid method using 256 cores attains its best performance with 4 threads can be 
understood via communication cost. (The reason why the case with 8 SMP threads is excluded here 
will be discussed later in Section 3.1.2 next.) The communication cost is the cost of iteratively 
coordinating solutions on subdomains, which involves coupling contacts and coordinating nodal values 
on shared boundaries, among subdomains, via message passing. The amount of data for coupling 
contacts is independent of decomposition, but the amount of data for coordinating nodal values on the 
boundaries is of course dependent on the size of shared boundaries among subdomains, which is 
proportional to the number of subdomains. (Dividing a square, of side length a, into two equal areas, 
results in a shared boundary line of length a; in contrast, dividing the same square into four equal 
areas results in two shared boundary lines, horizontal and vertical, with a total length of 2a.) 
Therefore, barring contact coupling from consideration, the number of messages and their sizes 
increase proportionally to the number of subdomains. 
 
For the hybrid method, we have the following relationship among core count, number of MPI ranks, 
and number of SMP threads: 
 

Core count = Number of MPI ranks  x  Number of SMP threads 
 
It follows that given a core count, say 256, the larger the number of SMP threads, the smaller the 
number of messages and their sizes are, and hence the less the communication cost is, since the 
number of MPI ranks is equal to the number of subdomains. That is so can be seen evidently from 
Figure 5, in which the 256-core message histograms for the hybrid method with 1, 2, and 4 SMP 
threads are shown. As a corollary, the reasoning also explains why the hybrid method with higher 
SMP numbers outperform the pure MPI method, since the message pattern of latter is the same as 
that of the hybrid method with 1 SMP thread. 
 
 

 
 
Figure 5: 256-core message histograms for the hybrid method with 1, 2 and 4 SMP threads 



7th European LS-DYNA Conference 
 

 
© 2009 Copyright by DYNAmore GmbH 

3.1.2 Computation cost—effects of CPU affinity and core placement 

CPU affinity improves memory access speed for an SMP program by preserving more spatial locality 
and temporal locality in code and data access, which in turn allows the size-limited cache to work 
more efficiently. This benefit from CPU affinity can be seen from Figure 6, which shows 256-core 
elapsed times with and without CPU affinity, and their comparisons, for the pure hybrid method and 
the hybrid method with 1, 2, and 4 threads on the HP BL2x220c cluster. It shows that CPU affinity 
improves performance for the hybrid method with more than one SMP thread, though it has little effect 
on the pure MPI method and no effect on the hybrid method with 1 SMP thread. 
 
Linux kernel does provide a mechanism to enforce CPU affinity, but it requires the software developer 
to activate it properly.  HP-MPI currently provides CPU-affinity and core-placement capabilities to bind 
an MPI rank to a core in the processor from which the MPI rank is issued. Children threads, including 
SMP threads, can also be bound to a core in the same processor, but not to a different processor; 
additionally, core placement for SMP threads is by system default and cannot be explicitly controlled 
by users.  
 
The inability to bind an SMP thread to a core in a different processor than the one the parent MPI rank 
resides will, when the number of SMP threads is greater than the number of cores per processor, force 
two different SMP threads to bind to one of the 4 cores in the processor; such binding of 2 executing 
programs to a single core, also known as oversubscribing, always greatly degrades an application’s 
performance. The abnormally long elapsed time (24 plus hours) for the 256-core hybrid method with 8 
SMP threads shown in Figure 7 is caused by oversubscribing.  
 
Also, the inability for users to explicitly control core placement with SMP threads explains why the 
hybrid method with 2 SMP threads on Harpertown processors does not perform well as that on 
Nehalem processors (relative performance 1.04 in Figure 7 versus 1.14 in Figure 3), even though the 
former has a larger cache (3 MB versus 2 MB pre processor). Examining the core placement in the 
hybrid method with 2 SMP threads, we have found that the two threads are bound to two cores that do 
not share a cache in the Harpertown processor; in contrast, any two cores in a Nehalem processor 
always share a cache (see Figure 1). Sharing a cache among SMP threads provides spatial and 
temporal localities for both code and data accesses and helps performance, and therefore we have 
the observation. 

3.1.3 Future CPU affinity project 

It is reasonable to expect that if the ability to bind an SMP thread to a core in a different processor 
than the one the parent MPI rank resides is available, the hybrid method with 8 SMP may outperform 
that with 4 SMP threads, as the number of messages and their sizes will be further reduced with the 
former.  It is also likely that for  the hybrid method with 2 SMP threads may outperform that with 4 on a 
Harpertown cluster for smaller problems, provided that core placement is done correctly. Therefore, 
we are planning a project on CPU affinity to allow these two capacities. 

3.2 Cache structures 

The cache structure of the Nehalem processor with memory controller, as depicted in Figure 1, is with 
NUMA (Non-Uniform Memory Access) architecture [2]. It has been known that CPU affinity helps 
NUMA architecture more than non-NUMA in most applications. This can partially explain why the 
Nehalem processor outperforms the Harpertown processor for an MPI method. 

3.3 Interconnect speed 

As the table Section 2.1 shows, the Nehalem cluster has a faster interconnect than the BL2x220c 
cluster. Faster interconnect always helps performance of an MPI application such as the pure MPI 
method or the hybrid method. But with limited study, it is difficult for us to assess the effect of 
interconnect speed on the hybrid method vis-à-vis the pure MPI method. 

3.4 Problem sizes 

Figure 8 shows that the 256-core performance of the hybrid method is actually a little bit slower than 
the pure MPI method with the 0.8-million 3-vehicle-collision model. The reason is because the number 
of messages and their sizes are much smaller for the 3-vehicle-collision model than those for the 
car2car model, so that reduction in the number of messages and their sizes will not help performance 
as much. 



7th European LS-DYNA Conference 
 

 
© 2009 Copyright by DYNAmore GmbH 

 
 

 
 
Figure 6: 256-core elapsed times with and without CPU affinity, and their comparison, for the pure MPI 
method and the hybrid method with 1, 2 and 4 threads, on the HP BL2x220c cluster 

 

 
 

Figure 7: 256-core elapsed times for the pure MPI method and the hybrid methods with 1, 2, and 4 
SMP threads, and the abnormally long elapsed time (24 plus hours) for the hybrid method with 8 SMP 
threads 



7th European LS-DYNA Conference 
 

 
© 2009 Copyright by DYNAmore GmbH 

 
 
Figure 8: 256-core performances of the pure MPI method and the hybrid method, and their 
comparison, with the smaller 3-vehicle-collision model, on the HP BL2x220c cluster 

3.5 Additional SMP parallelism 

The major computation cost of SMP LS-DYNA is from element processing loops and contact 
algorithm, etc. Currently, SMP parallelism is only applied to element processing loops, and it already, 
as shown in this investigation, shows an encouraging speedup. We expect the breakeven point for the 
pure MPI and the hybrid MPI will be even lower when the contact algorithm is applied with more SMP 
parallelism. 

4 Conclusion 
As described in the Introduction section, there is a natural correspondence between the organization 
of a multicore cluster and the hybrid method: A multicore cluster comprises a number of processors, 
each of which in turn comprises a number of cores; in contrast, the hybrid method comprises a 
number of MPI ranks, each of which in turn issues a number of SMP threads.   
 
First, in this investigation we have established that such a correspondence between hardware and 
software organizations can be exploited to gain performance advantage, provided that the problem 
size and the core count are big enough. For the 2.4-million-element car2car model, it is shown that the 
hybrid method gains 20 percent over the traditional, pure-MPI LS-DYNA method at 256 cores. 
Second, we have shown that CPU affinity with an appropriate core placement enhances the 
performance of the hybrid method in a multicore architecture. The best performance is achieved when 
the number of SMP threads is equal to the number of cores per processor. Finally, we have depicted 
that reduction in the number of messages and their sizes is the main reason for the performance gain 
in the hybrid method. 

5 Acknowledgment 
The result on the Nehalem cluster was obtained with the help from Nick Meng, of Intel Corporation. 

6 Literature 
[1] Hallquist, J.: "A Procedure for the Solution of Finite Deformation Contact-Impact Problems by 

the Finite Element Method,” University of California, Lawrence Livermore National Laboratory, 
Rept. UCRL-5066, 1976. 

[2] Patterson, D. and Hennessy, J.: “Computer Architecture: A Quantitative Approach”, Second Ed., 
1996, p.640. 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


