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Abstract: 
 
The usage of parallel hardware platforms has become a standard in the high performance computing 
community. The problem of scalability for high numbers of prcessors used in parallel are faced within 
each of the different software vendors. In this paper we describe some basic algorithms, which are 
used in the different FEM software programs. Different parallelization concepts are shortly described 
and the resulting scalability problems are discussed. 
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1 Introduction 
In the recent years, the usage of massively parallel computing has increased considerably in both 
research and industrial applications of high performance computing applications. The distributed 
memory hardware architecture has become popular because of the flexibility of the underlying 
processor technology and the possibility to use standard components both for the processor and the 
communication technology [3]. In the very recent past even heterogenous hardware architectures 
have been used for high performance computing applications. Grid technologies open more and more 
possibilities to integrate unused computing resources into the computing centre. 
 
 

2 Different strategies for parallelization 
There are different levels of parallelization: 
- parallelization on bit-level 
- parallelization on instruction level 
- parallelization on operating system level 
- parallelization on programming level 
 
In the case of parallelization on bit-level, e.g. several phases of an processor operation can be done in 
parallel using the pipelining principle. On instruction level e.g. a complicated expression with different 
independent operations can be parallelized. Parallelization on operating system level can be done by 
all operating systems, which support parallel hardware architectures. If it is not included in the 
standard system, additional components for resource (i.e. processor+memory) allocation and resource 
management can be done by separate software components. For all of the above parallelization 
techniques the software development and the applied algorithms are fairly straight forward and well 
known since a couple of years. The most challenging part of parallelization comes into the game for 
the software developer, if one wants to have a parallelization on programming level with the following 
requirements: 
- scaling possbilities 
- usage of standard components, because of price performance reasons 
In this case, the software developer needs to identify and coordinate parallel data fluxes. Appropriate 
algorithms must be chosen and implemented. In most cases a total rewrite and definiton of a new 
restructured software and data architecture of the complete software package needs to be done.   
 

2.1 Hardware Architecture 

The algorithmical choice depends on the type of the underlying hardware architecture. In the 
classification due to Flynn the following categories exist: 
- SISD – Single Instruction Single Data 
- SIMD – Single Instruction Multiple Data 
- MISD – Multiple Instruction Single Data 
- MIMD – Multiple Instruction Multiple Data 
All modern parallel computers belong to the latter category Multiple Instruction Multiple Data, which 
means, that a number of different subprograms are started on different processors with different input 
data. Within the MIMD category we have two different types of parallel arhitecture, the SMP (Shared 
Memory) and the MPP (Message Passing Protocol) architecture. In the SMP-variant all processors 
have one common memory adress block. In the MPP-variant each processor has its own memory. If 
one of the processors needs information from another, the required data must be transferred from one 
local memory to the other local memory via appropriate Message Passing Protocols.  
 

2.2 Different Software Aspects 

For the software developer it is a major difference, wether the software should be ported to a SMP-
parallel or a MPP-parallel system. In the case of SMP-parallel porting it is sufficient to prevent those 
memory blocks, which are used by different processors, from parallel read-write operations by different 
processors. Many parallel development systems provide a couple of tools, which make the porting of a 
serial software to a SMP-platform relatively easy. If the software is to be ported to a MPP environment, 
all variables, which need to be shared among the different processors, need to be exchanged via 
standard messages. Different ways for the message passing can be used, e.g. point to point or 
collective communication strategies. Commonly used software components for the message passing 
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are PVM (Parallel Virtual Machine) or MPI (Message Passing Interface). To get reasonable 
performance, a decomposition of the problem must be undertaken, which tries to keep the necessary 
communication load as small as possible. 
 

3 Algorithmical aspects 

3.1 Basic linear Algebra 

Matrix-Vector computations can be parallelized without much communication costs by assigning 
appropriate matrix blocks to the different processors. The result vector is divided in an analogous way. 
In a similar way also vector- or matrix-products can be calculated in parallel. It is much more difficult, 
to calculate the inverse of a matrix, which is necessary in all implicit-type based FEM-codes. 
Given a set of linear equations 

bAx =  (1) 

where the matrix A is decomposed into lower and upper triangular matrices L and U and the diagonal 
terms, which are denoted by D:  

ULDA −−=  (2) 

Besides direct solver strategies, iterative solver have become more popular in the last years, because 
the number of floating point operations needed for the system solution can be an order of magnitude 
lower in the case of iterative solvers. There are a number of direct solvers available, which have been 
sucessfully applied on parallel hardware architectures, e.g. Cholesky factorization technique [11] or 
multifrontal solver techniques [2]. Going to iterative solver techniques makes parallelization easier, as 
in this case only matrix-vector-computations need to be done. As an example consider one of the 
basic iterative solvers, the Jacoby iteration technique, which is given by: 

)(11 bAxDxx nnn −−= −
+  (3) 

The big disadvantage of all elementary iterative solvers is the slow convergence rate, which must be 
improved by appropriate preconditioning techniques. 

3.2 Application to implicit Codes 

In the case of implict time-stepping, large linear equation systems need to be solved at each time step. 
In nonlinear or special linear cases with complex geometry, or in the presence of convection-
dominated terms in the underlying differential equations, the linear system becomes ill-conditioned. In 
these cases a number of problem-specific preconditioning techniques have been proposed.[5] 
Preconditioning techniques can be simply described in the following way: Instead of solving equation 
(1), the equation is multiplied by a preconditioning matrix P: 

PbPAx =  (4) 

If P=A-1 Equation (4) is trivial. Thus all iterative solvers converge within one iteration. A good 
preconditioner calculates P in a very fast and efficient way and accelerates the convergence behavior 
of the iterative solver considerably also for ill-conditioned matrices, which arise in all complex 
nonlinear applications. Different approaches based on ideas like hierarchical shape functions, 
multigrid approaches are common practice [10]. A non-trivial preconditioning technique takes more 
time than the iterative solver itself. So the construction of the preconditioner must be done in parallel, 
too. It turns out, that for the preconditioning it is better to distribute the different matrix blocks 
according to geometric aspects as solely algebraic criteria. [4] 

3.3 Application to explicit Codes 

In explicit-type codes most of the work done can be viewed as matrix-vector-type operations. The 
distribution of the matrix blocks to the different processors can be done due to algebraic (e.g. SMP-
version) or geometric criteria (domain decomposition). For the element processing phase, there is 
almost no communication needed and an effectivity of 99.7 % can be achieved [1]. The nodal update 
involves element contributions from different domains for all nodes on the interface between separate 
domains. To keep the communication cost small, one tries to divide the mesh in such a way, that the 
number of nodes on the interface is as small as possible. There are a couple of strategies for the 
domain decomposition, based on geometrical properties, graph-theory or a multi-level-approach [6], 
[7], [8]. 
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3.4 Contact 

Unless there is no mesh adaption for both implicit and explicit codes, the domain decomposition can 
be done once in advance of the whole computation. The treatment of the contact behavior can change 
the situation completely. As soon as elements from different domains come into contact, 
communication between these domains must occur. Also for contact detection a global search routine 
is needed. Dynamic domain decomposition needs to be applied, to keep communication down and 
also to keep the load balance between the different processors [9]. 
 

4 Summary 
Some basic numerical algorithms for parallel hardware architectures have been shown. Their 
application within explicit or implicit codes have been described. With the evolving need for standards 
within the high performance computing community it will be interesting to see, wether the usage of 
standard parallel libraries for these basic algorithms will become a common practice in future.  
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