
3. LS-DYNA Anwenderforum, Bamberg 2004 CAE / IT IV

 E - IV -

Efficient Shape Optimization of Crashworthy Structures

using a New Substructuring Method

Ronald C. Averill

Red Cedar Technology

4572 S. Hagadorn Rd., Suite 1-E

East Lansing, MI 48823

r.averill@redcedartech.com

Abbreviations:

HEEDS – Hierarchical Evolutionary Engineering Design System

COMPOSE – COMPonent Optimization within a System Environment

Keywords:

crashworthiness, optimization, shape, decomposition, HEEDS, COMPOSE

1

© 2004 Copyright by DYNAmore GmbH

CAE / IT IV 3. LS-DYNA Anwenderforum, Bamberg 2004

E - IV -

ABSTRACT

A new methodology is introduced to drastically reduce the time and effort required to

perform vehicle crashworthy design optimization on components or subsystems whose

performance is strongly coupled to that of the complete system to which they belong. The

current approach, named COMPOSE, reduces the CPU time for such design studies by a

factor of 101 – 103, depending upon the problem definition. The main advantage of

COMPOSE is that potentially thousands of design iterations can be performed in about the

same amount of time required to perform a few (4-8) system level evaluations. With this

approach, engineers can perform design studies and thoroughly explore new design concepts

that were previously ignored due to their computational expense. This technology has been

implemented into a software code called HEEDS (Hierarchical Evolutionary Engineering

Design System). Using LS-DYNA explicit as the finite element solver within the HEEDS

optimization environment, this process has been applied to several automotive lower

compartment rail designs, resulting in significant gains in performance compared to baseline

rails designed by experienced engineers. An example application of this method is described

herein.

INTRODUCTION

The design of structures is often driven by many competing criteria such as lower cost,

weight reduction, enhanced safety and multi-disciplinary performance, and manufacturability.

In addition, the introduction of new manufacturing processes and materials significantly

increases the available design space, or the set of all possible designs for a problem. In order

to explore this large design space more effectively while trying to reduce design cycle times,

engineers can now take advantage of automated design optimization technology. These tools

can greatly decrease the time required to identify a set of feasible, or even near-optimal,

designs prior to building and testing the first prototype. Moreover, these tools can also

provide designers with the freedom and power to seek creative solutions that are not obvious

to even the most experienced engineer. This is true in general but particularly so with shape

optimization problems, which can involve potentially hundreds of design variables.

Moreover, in the shape design of crashworthy systems, the high degree of nonlinearity in the

system response makes it difficult to rely solely on intuition to estimate the effects of

simultaneously modifying numerous design parameters.

In large complex engineered systems, often only a subsystem or a small part of the

system design needs to be modified to adapt or improve performance in some way. For

example, to improve frontal crash safety in an automobile, an engineer might focus design

changes on only the vehicle lower compartment rails and the bumper. Or, a roll-over crash

design study may focus on only a roof rail.

In most cases of design for crashworthiness the subsystem behavior is strongly coupled

to that of the overall system in such a way that even small changes to the subsystem can

strongly affect the interactions between the system and subsystem. In these cases, design

optimization of the subsystem usually requires that a mathematical/computational model of

the complete system be used so that these interactions can be taken into account directly.

These full system level models are often very large and complicated, and thus a significant

amount of CPU time (e.g., 10-30 hours) is required to simulate the performance of each new

design scenario. Because many (100-1,000) potential design evaluations might be necessary

to perform a high fidelity design optimization involving 10-250 design variables, it would

take many weeks to perform a design optimization study on even a small subsystem.

2

© 2004 Copyright by DYNAmore GmbH

3. LS-DYNA Anwenderforum, Bamberg 2004 CAE / IT IV

 E - IV -

A new methodology is introduced here to drastically reduce the time and effort required

to perform design optimization on subsystems whose performance is strongly coupled to that

of the complete system to which they belong. The current approach reduces the CPU time for

such design studies by a factor of 101 – 103, depending upon the problem definition. Further,

this approach has the potential to yield better results than is possible by directly applying

most optimization methods to a full system model because a much more thorough search is

performed, and robustness of the design can be enforced within the current approach. This

new technology is called COMPOSE, which stands for COMPonent Optimization within a

System Environment. With this approach, engineers can achieve designs with significantly

higher performance and robustness, and in much less time.

BACKGROUND

Optimization is a process that seeks to identify the best design according to a specified

measure, or objective function, while also satisfying certain restrictions, or constraints. But

mathematical methods used for optimization may not always identify the best design, and in

these cases we seek to find as good a design as possible, or at least a design that is better than

the existing one. Herein, use of the word optimal is intended to mean best, or as good as

possible, or better than before, depending upon what is possible in that context and

application. In practical situations, we often seek a design that is optimal with respect to

robustness and reliability rather than strict performance under a specified set of deterministic

environmental circumstances.

Gradient-based optimization techniques have been applied successfully to many

optimization problems (e.g. [6-9]). However, these methods have several drawbacks. First,

they tend to find quickly and get stuck on local extrema [9]. In addition, gradient methods are

not suitable for finding singular extrema, or for optimizing problems with discontinuous or

noisy response functions (e.g., crash problems).

Optimization methods based on genetic algorithms (GAs) and other evolutionary

methods have recently been applied to various engineering problems [1-6,10-18], and have

demonstrated the potential to overcome many of the problems associated with gradient-based

methods. However, the need of GAs to evaluate many alternative designs often limits their

application to problems in which the design space can be made sufficiently small, even

though GAs are most effective (relatively) when the design space is large.

The concept of multi-level solution of design optimization problems has been

investigated for more than 20 years (see [19-23]). Yet its applications have often been limited

by the specific nature of the algorithm, or by the requirement to calculate sensitivity

derivatives of the subsystem parameters with respect to the system level response. In the

current study, the shortcomings of existing multi-level decomposition methods are overcome

in a general way, so that a generalized robust method for solving several very wide classes of

multi-level design optimization problems can be developed.

We are concerned here with large optimization problems, where large may refer to the

number of design variables and/or the CPU time required to evaluate the objective function

for a particular design candidate. In such cases it is common to break the problem into smaller

parts, or subsystems, using decomposition.

Decomposition may be applied to the optimization problem itself, to the

physical/temporal domain of the system, and/or to the disciplinary responses in a

multidisciplinary problem. The present discussion focuses primarily on spatial

decomposition, wherein the physical system is decomposed into several subsystems. The

COMPOSE algorithm is not limited to such problems, however.

After an optimization problem is decomposed, the solution procedure may take one of

several forms. Among the more popular methods is a multi-level optimization procedure. For

example, in a two-level optimization procedure the optimization of the subsystem variables,

3

© 2004 Copyright by DYNAmore GmbH

CAE / IT IV 3. LS-DYNA Anwenderforum, Bamberg 2004

E - IV -

x
i, is nested inside an upper-level optimization of the global variables, z. It is also possible to

define a third set of variables, y, that are output from one subsystem and input to another

subsystem [23]. An iterative approach can then be used to coordinate the identification of the

subsystem and global variables that jointly optimize the system. Most such iterative

approaches depend upon the calculation of sensitivity derivatives of the optima of each

subsystem with respect to changes in the global variables, z. Often, the calculation of these

derivatives is either very difficult or computationally very expensive. In some cases, the

sensitivity derivatives are discontinuous. The cost of calculating the sensitivity derivatives

depends in part on the front of interaction between the subsystems and the number of design

variables.

A solution procedure that does not require the calculation of sensitivity derivatives would

be beneficial in many applications. Such an approach is often called direct iteration, or fixed-

point iteration. This technique, however, has less than desirable convergence characteristics

when applied to some classes of problems. Namely, problems in which large changes in the

interaction variables occur during the iteration process may not converge to a near optimal

solution, and may fail to converge at all.

Here, several modifications to the fixed-point iteration algorithm are discussed that

significantly enhance its ability to convergence when applied to multilevel optimization of

large problems.

GENERAL PROBLEM STATEMENT

Consider any continuous or discrete system that exists in the domain , as shown in

Figure 1(a). The spatial and temporal performance of the system under a prescribed set of

environmental conditions (generalized loads) can be described mathematically by equations

(e.g., differential, integral, algebraic, etc.) in terms of primary variable(s) denoted u(x,y,z,t)

and the secondary variable(s) denoted f(x,y,z,t). The boundary of is denoted as .

Within the system domain , one or more subsystems)(isubsystem (i=1 to N) may be

identified, as shown in Figure 1(b). The only restriction on the definition of these subsystems

is that their domains may not overlap. Subsystems i and j must not have any common interior

points for all i,j=1 to N, but subsystems may have common boundary points. The subsystem

boundary)(isubsystem represents the boundary between subsystem i and the remainder of the

system, as shown in Figure 1(c). We assume here without loss of generality that:

)(
ˆ

isubsystemuu on)(isubsystem (1)

Of interest here is the common situation in which the performance of one or more

subsystem designs is to be optimized by changing one or more characteristics (design

variables) of the subsystem(s). The subsystems do not share any design variables, and the

remainder of the system is fixed so there are no global design variables. In this context, a

subsystem is optimized when a specified objective function is minimized or maximized,

including the special case in which the subsystem satisfies a particular performance target.

The subsystem designs may also be subject to a set of constraints that must be satisfied. The

optimization is performed by finding the simultaneous values of a set of design variables that

extremize the objective function while satisfying all constraints. Mathematically, the

optimization statement within each subsystem may take the form:

Minimize (or maximize): Fi(x1,x2,…,xn)
i

such that: Gij(x1,x2,…,xn)
 i < 0, j=1,2,…,pi

Hij(x1,x2,…,xn)
 i = 0, j=1,2,…,qi

4

© 2004 Copyright by DYNAmore GmbH

3. LS-DYNA Anwenderforum, Bamberg 2004 CAE / IT IV

 E - IV -

(2)

where (x1,x2,…,xn)
 i are design variables in subsystem i

Fi(x1,x2,…,xn)
 I is the objective (performance) function in subsystem i

Gij(x1,x2,…,xn)
 i are inequality constraints in subsystem i

Hij(x1,x2,…,xn)
 i are equality constraints in subsystem i

The problem statement in Equation (2) is intended to include optimization problem statements

in the broadest sense, including multi-objective optimization.

In some cases, even major changes to a subsystem design do not strongly affect the

interactions between the system and the subsystem(s). In other words, there are some systems

in which the subsystem essential boundary conditions)(
ˆ

isubsystemu experience small or no

change when the values of design variables in any subsystem are modified. In these cases, the

subsystem i can be redesigned in isolation using mathematical models involving only the

domain)(isubsystem , which should be smaller and simpler than that of the entire system. The

system contributions are included through the boundary conditions)(
ˆ

isubsystemu .

On the other hand, there are many cases in which the subsystem behavior is strongly

coupled to that of the overall system in such a way that even moderate changes to a

subsystem can strongly affect the interactions between the system and subsystem(s). This

category of problem is the focus of the present study. The objective of the present work is to

drastically reduce the time and effort required to perform design optimization on subsystems

whose performance is strongly coupled to that of the complete system to which they belong.

Let us assume that a given design optimization statement as in Equation (2) requires that

a minimum number of design evaluations be performed, this number of evaluations

depending primarily upon the number of design variables, the nature of the design space, and

the optimization search algorithm employed. Then, a reduction in the computational effort

required to optimize a subsystem must be achieved by reducing the computational effort to

evaluate each design scenario. Here, a technique is sought in which most design evaluations

can be performed using the subsystem mathematical models, which should be much smaller

and computationally more efficient than the complete system level model. But such an

approach must also account for the sometimes strong interactions between the performance of

the system and the subsystem(s).

DESCRIPTION OF COMPOSE

In a typical design optimization problem, the goal is to design a system so that it behaves

in a prescribed or optimal manner in a given environment or under a set of prescribed

conditions. The challenge of the current problem is to simultaneously identify both a

subsystem that is optimal according to a specified criterion and the subsystem boundary

conditions under which the subsystem should behave optimally.

In the general case, the subsystem boundary conditions associated with the optimal

design cannot be known until the design approaches its optimal form, and the final optimal

design cannot be identified until the subsystem boundary conditions approach a form

associated with the final optimal design. In other words, the optimal design and the subsystem

boundary conditions are interdependent, and they must be codetermined. Using the previous

notation, we may denote the subsystem design variables as xi, and the subsystem boundary

conditions represent the global variables, z.

A direct iterative approach has been devised to solve this problem without the need for

calculating sensitivity derivatives. In its simplest form, the algorithm works as shown in

Figure 2. Note that the subsystem optimization in step 3 is typically terminated prior to

5

© 2004 Copyright by DYNAmore GmbH

CAE / IT IV 3. LS-DYNA Anwenderforum, Bamberg 2004

E - IV -

convergence to the optimal solution. Often, there is no point in expending the extra effort

toward finding an exact subsystem optimum prior to identifying subsystem boundary

conditions that are close to their final form. Hence, the iterative process often proceeds using

near optimal subsystem solutions.

It has been found that convergence toward an improved solution is greatly improved

when the optimized subsystem design(s) in iteration k:

1. have good performance under the kth set of subsystem boundary conditions; and

2. exhibit similar performance characteristics under the kth and (k+1)th boundary

conditions (i.e., the system and subsystem solutions in steps 3 and 4 (see Figure 2),

respectively, do not have significantly different gradients or eigenmodes).

Thus, it is important during intermediate iterations to identify optimal or near optimal

subsystem designs that have similar performance under small to moderate variations in the

subsystem boundary conditions. Optimal subsystem designs that satisfy the above criteria are

said to be robust against stochastic variations in the subsystem boundary conditions.

Convergence may also be improved by reducing the magnitude of the change in

subsystem boundary conditions from one iteration to the next, or by using a weighted average

of the boundary conditions at two consecutive steps.

In order to satisfy the conditions above, the subsystem boundary conditions at iteration k

can be cast in the form:
k

s

ssisubsystem uwu
1

)(
ˆ~ˆ on)(isubsystem (3)

where),,,(ˆ tzyxus are the subsystem boundary conditions in terms of generalized primary

variables on)(isubsystem at iteration s; and),,,(~ tzyxws are weight functions whose spatial

and temporal distributions are predetermined and whose magnitudes are varied stochastically

within a selected range. Note that making the boundary conditions stochastic in this procedure

gives rise to a very small number of stochastic variables, so that the computational cost

penalty associated with extra evaluations is also very small.

It is possible for the interaction between the system and a subsystem to be specified or

constrained along a portion of the boundary)(isubsystem , whenever this interaction is either

known or desired to be of a particular form.

COMMENTS ON THE CURRENT APPROACH

The current strategy is independent of the optimization search algorithm used to optimize

any subsystem. Moreover, it is possible to use entirely different optimization search

algorithms to optimize different subsystems.

The system and subsystem models need not be of the same type. The only requirement is

that the interactions between the system and subsystem can be identified, with sufficient

accuracy to make the subsystem analyses meaningful, by performing an evaluation of the

system model. The use of different model types for the system and subsystem can be of

significant advantage in some cases.

Though the description here refers to subsystems in the spatial domain, it is also possible

to apply this decomposition approach to the domains of time, design space, and scientific

discipline. It is further possible for multiple types of decomposition to exist in the same

decomposed system.

The procedure described here can be generalized to the case in which the system is

hierarchically decomposed into N subsystems, wherein the ith subsystem is further

6

© 2004 Copyright by DYNAmore GmbH

3. LS-DYNA Anwenderforum, Bamberg 2004 CAE / IT IV

 E - IV -

decomposed into Ni subsystems, each of which is further decomposed into Nij subsystems,

and so on.

BENEFITS OF THE CURRENT APPROACH

When applying existing approaches to design problems in which each evaluation is very

expensive, engineers can afford to perform only a small number of design iterations due to

time and resource constraints. Hence, only a small number (2-5) of design parameters can be

considered. The main advantage of the current approach is that thousands of design iterations

can be performed in about the same amount of time required to perform 5-15 system level

evaluations. Therefore, hundreds of design parameters can be considered simultaneously.

With this approach, engineers can achieve designs with significantly higher performance and

robustness, and in less time. Furthermore, engineers can thoroughly explore new design

concepts that were previously ignored due to their computational complexity.

IMPLEMENTATION

COMPOSE is a strategy for design optimization that is generally independent of

optimization search algorithm, but it does require a rather sophisticated process integration

capability in order to perform effectively. For this reason, it has been implemented in such a

way as to take advantage of the unique multi-agent architecture available within the design

optimization software package HEEDS.

HEEDS (Hierarchical Evolutionary Engineering Design System) allows designers to

automatically and concurrently explore hundreds of design parameters and their relationships

in product and process design scenarios, and intelligently seeks optimal values for parameters

that affect performance and cost. It can be used to improve any engineering system

(structural, thermal, fluid, electrical, etc.), including multi-disciplinary problems. In structural

design applications, for example, HEEDS can evolve designs that simultaneously satisfy

objectives and targets for stiffness, durability, crashworthiness, noise and vibration, mass,

cost, manufacturability and reliability.

HEEDS applies several optimization search processes simultaneously, allowing each

process to take advantage of the best attributes and solutions found from other parallel

searches. The multiple semi-independent search processes exchange information about the

solution space with each other, helping them jointly to satisfy multiple constraints and

objectives. This search method is called a heterogeneous multi-agent approach. It quickly

identifies design attributes with good potential and uses them to focus, improve and accelerate

the search for an optimum solution.

The HEEDS multi-agent approach also allows multiple adaptive hybrid methods to work

semi-independently on a common problem. These methods facilitate decomposition of a

design problem so that the search can be performed on various representations (e.g., different

numbers of design variables at different levels of refinement) of the problem and using

different performance measures (e.g., combinations of objectives and constraints) and local

search methods. This optimization strategy efficiently searches for good designs at lower

levels of refinement, developing “hunches” that can guide and be shared with other agents

that are simultaneously searching with the more detailed representations required for final

results. Use of multiple agents allows this multi-level approach to be performed on multiple

computer processors to further speed the search, but it can also be implemented on a single

processor. In general, design iterations that formerly required several months are now

completed in days or hours.

7

© 2004 Copyright by DYNAmore GmbH

CAE / IT IV 3. LS-DYNA Anwenderforum, Bamberg 2004

E - IV -

AN EXAMPLE APPLICATION

The system (truck) and subsystem (lower compartment rails) shown in Figure 3 were

selected for demonstrating the application of COMPOSE to crashworthiness design problems.

In this problem, the vehicle impacts a rigid wall with an initial velocity of 35 mph. The shape

of the lower compartment rails was designed using 140 shape design parameters, 70 in each

rail. The design parameters were actually spline points which determined the cross-sectional

shape of the rail at various stations along its length, as shown in Figures 3(c,d) and 4. An

automatic mesher was used to generate a new mesh for each potential design. Each rail was

designed separately. The system and subsystem level finite element analyses were performed

using LS-DYNA, an explicit finite element code. Boundary conditions at the

system/subsystem interface were extracted from the system level model and then imposed on

the subsystem level model. The automated design optimization was executed on a personal

computer during a period of about five days. The energy absorbed in the subsystem (rails)

was increased by approximately 30% (see Figure 5(a)), while the overall energy absorbed by

the system (truck) was increased by more than 5.5% (see Figure 5(b)). In Figure 5(a), the

curve denoted Local EA represents the increase in energy absorbed in the rails as measured

by subsystem model, while the curve denoted Global EA represents the increase in energy

absorbed in the rails as measured by the system level model. These results differ slightly due

to the multiple contact conditions that occur in the system level model, which change as the

rail design is modified. Only six system level evaluations were performed, but complete

coupling between the system and subsystem was maintained. This application clearly

demonstrates the potential of COMPOSE to solve crashworthiness problems and other classes

of design problems that were formerly considered intractable.

REFERENCES

[1] Averill, R.C., W. F. Punch, E. D. Goodman, S.-C. Lin, Y. C. Yip, Y. Ding, 1995,

"Genetic Algorithm-Based Design of Energy Absorbing Laminated Composite

Beams", Proc. ASME Design Eng. Tech. Conf., Vol. 1, Boston, pp. 89-96.

[2] B. Malott, R. C. Averill, E. D. Goodman, Y. Ding, W. F. Punch, 1996, "Use of

Genetic Algorithms for Optimal design of Laminated Composite Sandwich Panels

with Bending-Twisting Coupling", AIAA/ASME/ ASCE/AHS/ASC 37th Structures,

Structural Dynamics and Materials Conference, Salt Lake City, Utah.

[3] D. Eby, R. C. Averill, W. Punch, O. Mathews, E. Goodman, 1997, "An Island

Injection GA for Flywheel Design Optimization", Proc. EUFIT ’97, Aachen,

Germany, pp. 687-691.

[4] D. Eby, R. Averill, W. Punch, E. Goodman, "Evaluation of Injection Island GA

Performance on Flywheel Design Optimization," Adaptive Computing in Design and

Manufacture, I. C. Parmee, ed., Springer, Berlin, 1998, pp. 121-136.

[5] Red Cedar Technology, proprietary internal report, 2001.

[6] R.C. Averill, D. Eby and E. Goodman, “How Well Can It Take a Hit? – An

advanced automated optimization technique can help designers develop crashworthy

structures.” ASME Mechanical Engineering Design, pp. 26-28, March, 2001.

[7] C.A. Soto and A.R. Diaz, 1993, “Optimum layout and shape of plate structures using

homogenization,” in Topology Design of Structures, M.P. Bendsoe and C.A. Mota

Soares, eds., pp. 407-420.

[8] K. Suzuki and N. Kikuchi, 1990, “Shape and topology optimization by a

homogenization method,” in Sensitivity Analysis and Optimization with Numerical
Methods, AMD-Vol. 115, ASME, pp. 15-30.

[9] K. Suzuki and N. Kikuchi, 1991, “A homogenization method for shape and topology

optimization,” Comp. Meth. Appl. Mech. Eng., 93, 291-318.

8

© 2004 Copyright by DYNAmore GmbH

3. LS-DYNA Anwenderforum, Bamberg 2004 CAE / IT IV

 E - IV -

[10] E. Sandgren, E. Jensen, and J.W. Welton, 1990, “Topological design of structural

components using genetic optimization methods,” in Sensitivity Analysis and
Optimization with Numerical Methods, S. Saigal and S. Mukherjee, eds., AMD-Vol.

115, ASME, pp. 31-43.

[11] C.D. Chapman, K. Saitou, and M.J. Jakiela, 1993, “Genetic algorithms as an

approach to configuration and topology design,” in Proc. 1993 ASME Design

Automation Conference, Albuquerque, New Mex., Sept.

[12] S. Nagendra, R.T. Haftka, and Z. Gurdal, 1992, “Stacking sequence optimization of

simply supported laminates with stability and strain constraints,” AIAA Journal, 30,

2132-2137.

[13] R. LeRiche and R.T. Haftka, 1993, “Optimization of laminate stacking sequence for

buckling load maximization by genetic algorithm,” AIAA Journal, 31, 951-956.

[14] S. Nagendra, R.T. Haftka, and Z. Gurdal, 1993, “Design of blade stiffened

composite panels by a genetic algorithm approach,” in Proceedings of the 34th

AIAA/ASME/AHS SDM Conference, La Jolla, CA, April 19-22, pp. 2418-2436.

[15] M. Leung and G.E. Nevill, Jr., 1994, “Genetic algorithms for preliminary 2-D

structural design,” in Proceedings of the 35th AIAA/ASME/AHS SDM Conference,

Hilton Head, SC, April 18-20.

[16] S.-C. Lin, W.F. Punch, and E.D. Goodman, 1994, “Coarse-grain parallel genetic

algorithms: categorization and analysis,” IEEE Symposium on Parallel and

Distributed Processing, pp.27-36.

[17] Process Integration, Design Optimization Emerging as New Solution Category, by

Daratech Research Staff, 2002.

[18] D. Eby, R.C. Averill, E.D. Goodman and W. Punch, “The Optimization of

Flywheels Using an Injection Island Genetic Algorithm,” Evolutionary Design by
Computers, P. Bentley, editor, Morgan Kaufmann, San Francisco, pp. 167-190,

1999.

[19] J. Sobieszczanski-Sobieski, B.B. James and A.R. Dovi, “Structural Optimization by

Multilevel Decomposition,” AIAA Journal, Vol. 23, No. 11, pp. 1775-1782, 1985.

[20] J. Sobieszczanski-Sobieski, B.B. James and M.F. Riley, “Structural Sizing by

Generalized, Multilevel Optimization,” AIAA Journal, Vol. 25, No. 1, pp. 139-145,

1987.

[21] R.T. Haftka, “An Improved Computational Approach for Multilevel Optimum

Design,” J. Structural Mechanics, Vol. 12, pp. 245-261, 1984.

[22] M. Papadrakakis and Y. Tsompanakis, “Domain Decomposition Methods for

Parallel Solution of Shape Sensitivity Analysis Problems,” Int. J. Num. Meth. Eng.,
Vol. 44, pp. 281-303, 1999.

[23] J. Sobieszczanski-Sobieski, T.D. Altus, M. Phillips and R. Sandusky, “Bilevel

Integrated System Synthesis for Concurrent and Distributed Processing,” AIAA
Journal, Vol. 41, pp. 1996-2003, 2003.

9

© 2004 Copyright by DYNAmore GmbH

CAE / IT IV 3. LS-DYNA Anwenderforum, Bamberg 2004

E - IV -

Figure 1. Schematic of system and subsystem domains and their boundaries.

Figure 2. Flow chart for the COMPOSE iteration strategy to solve multi-level

optimization problems.

Start

No

No

1. Evaluate system model using initial subsystem design and

extract boundary conditions for subsystem model

2. Update subsystem boundary conditions

according to Equation (3).

3. Perform design optimization using subsystem model and

most recent stochastic subsystem boundary conditions

4. Evaluate system model using updated subsystem design

and extract new boundary conditions for subsystem model

Max cycle number

exceeded?

Stop

Yes

YesUpdate subsystem

boundary conditions?

(a) System (b) System with subsystems denoted

(c) Subsystems

)(isubsystem

)(isubsystem

)(isubsystem

)(jsubsystem

)(jsubsystem

)(jsubsystem

10

© 2004 Copyright by DYNAmore GmbH

3. LS-DYNA Anwenderforum, Bamberg 2004 CAE / IT IV

 E - IV -

Figure 3. Crash model used to demonstrate COMPOSE.

Figure 4. Cross-sectional shape representation. Each node represents a spline point that

can move normal to the original rectangular shape in the X’Y’ plane.

 (a) System Level Model (pickup truck) (b) Subsystem Level Model (lower rails)

 (c) Reduced Subsystem Level Model (d) Finite element model of subsystem rails

11

© 2004 Copyright by DYNAmore GmbH

CAE / IT IV 3. LS-DYNA Anwenderforum, Bamberg 2004

E - IV -

 (a) (b)

Figure 5. Energy absorbed in subsystem (a) and system (b) as a function of design cycle.

0 5 10 15 20 25
6.2

6.25

6.3

6.35

6.4

6.45

6.5

6.55

Cycle no

S
ys

te
m

 e
ne

rg
y

ab
so

be
d

1x
E

7

0 5 10 15 20 25
2

2.5

3

Cycle no

E
ne

rg
y

ab
so

rb
ed

 1
xE

7

Local EA
Global EA

12

© 2004 Copyright by DYNAmore GmbH

