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U Not all X86 Processors are created =
® RISC Cores — scrupulous instruction preference
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Opteron = Execution + Memory Access + IO

U scalable Memory Bandwidth and 10
® physical memory scales with CPU #

® memory bandwidth scales with CPU #

® increased single threaded memory bandwidth
" memory latency does not scale with CPU #

® dramatically lower memory latenc
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Opteron vs Itanium
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Opteron vs Itanium

U Progressive 64-bit approach: 32-bit instruction + prefix byte

® |everages x86 compiler technology — reliable compilers, port easily
®  code size increase is minimal (~5%) — large caches not required
U x86 CPUs = RISC cores + CISC—RISC instruction decoders

® provides x86 processors high clock frequency and legacy compatibility

® processor not compiler manages RISC core - recompile rarely
® |tanium is a slave to the compiler - recompile often
U out-of-order execution and register renaming
®  Opteron manages it’s registers intelligently — less compiler reliant
®  |tanium requires the compiler to think for it — strong compiler reliance

Both Opteron and Itanium are RISC, but Opteron doesn’t require
reinventing compilers, large caches & a mint to purchace
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Opteron vs Xeon EMT

Opteron: INT and FP Execution Units

80-bits
S

Xeon EMT: FP Execution Units |

128-bits FADD FMUL
IIL |
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All X86 RISC Cores aren’‘t created =
Opteron vs Xeon EMT

QO # of int pipes and pipeline depth impact integer throughput
®  Opteron has 3 integer pipes — +50% reg,reg move thoughput
®  Opteron has 3 ALU/AGU units — +50% +,-,logical, shift throughput
® # pipeline stages differs — shorter instruction execution latency
U Different Register File Sizes (Opteron 80-bit, Xeon 128-bit)
® size dictates # RISC ops in an x86 instruction — instruction preference
® dictates # bits written from FPU pipes — limits scalar SIMD throughput
U Design of FPU and issue bandwidth from FP scheduler
®  Opteron: ADD/MUL/ST pipes eat and write 240 bits per clock
®  Xeon: ADD/MUL pipes eat and write 128 bits per clock

Though Xeon64 and Opteron are instruction compatible, Xeon64
delivers 2 the throughput per clock on SIMD scalar code
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AMD Opteron™,Pentium®4 (rpu analysis) [Pan
Throughput of SSE, SSE2, x87 Operations ]
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AMD Opteron™,Pentium®4 (aLu Analysis) @

Throughput and Latency Comparison
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Opteron’s on die IO controller
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Opteron’s on die IO controller

(| Hypertransport
® asynchronous coherent communication — maintain MP cache coherency
® high rate of communication — low impact on MP memory latency
([l Memory Bandwidth
® scales linearly with # of processors in system
® greater % of theoretical peak delivered — low latency memory access
([l Memory Latency
® memory requests retired rapidly — enhances memory bandwidth

" doesn't scale linearly with # CPUS — scalable SMP performance
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Compiler Enhancements driven by DYNA

Q Overview of enhancements in PGI 5.2
= all vector code isn't created equal

» addressing of common block variables

= |oop peeling & optimal vector code

» packing scalars into vector format

» shuffling data in loops with GPRs

= excessive prefetching — caveats to using sw prefetch

= tuning of the unrolling heuristic - less register pressure
= expanded class of vectorizable loops

F90 pointer addressing support for objects greater than
GB

N

October 4, 2004 ‘ Computation Products Group ‘ 15

Minimizing bubbles in the FPU pipeline

Q consider the following loop:
DO i=1,N
a(i) = a(i) + b(i)*[c(i)+d(i)]

ENDDO
3. ‘f’c 3

S

.
e, 'R,
L A

‘e
.

. ‘e

A ‘A

movlps (d), $xmm0
’

movlps (d), $xmmO0

movaps (d), $xmmO0

movhps 8 (d), $xmm0 movhps 8 (d) , $xmm0 addps (c), $xmm0
movlps (c), sxmml movlps (c),%$xmml operate mulps (b), $xmml
movhps 8 (c), $xmml : movhps 8 (c), $xmml from addps (a), $xmml
addps %xmm0, $xmml renaming addps %xmm0, $xmml memory

movlps (b),%xmm2 === =P noylps (b),Sxmm0 == =

movhps 8 (b), $xmm2 movhps 8 (b) , $xmm0 on

mulps $xmm2, $xmml mulps %$xmm0, $xmml 16-byte

movlps (a),%$xmm3 movlps (a), $xmm0 aligned

movhps 8 (a), $xmm3 movhps 8 (a), $xmm0 addresses

addps %$xmm3, $xmml

v’ uses 4 registers
v’ generates 8 bubbles

addps %xmm0, $xmml

v’ uses 2 registers
v’ generates 8 bubbles

v’ uses 1 register
v’ generates 2 bubbles
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Minimize GPR stores and loads from stack

O consider the common blocks and loop below:

Common/testl1/x1 (N) ,x2(N) ,x3(N) ,y1(N),y2(N),y3(N)

Common/test2/px1 (N) ,pyl (N) ,px2 (N) ,py2 (N)

Common/test3/vx2 (N) ,vx3(N) ,vx4 (N) ,vy2 (N) ,vy3(N) ,vy4 (N) ,vz2 (N) ,vz3(N) ,vz4 (N)
Common/test3/gl (N) ,g2 (N) ,g3(N) ,g4 (N)

Common/test4/ax (N) ,ay (N) ,bz (N)

do i=1,N
xi =area(i)*(x3(i)-x2(i)-x4(1i))
yi =area(i)*(y3(i)-y2(i)-y4(i))
gl(i)= 1.-px1(i)*xi-pyl (i) *htyi
g2(i)=-1.-px2 (i) *xi-py2 (i) *htyi
g3(i)= 2.-gl1(i)
gd(i)=-2.-g2(i)
ax(i)=g2 (i) *vx2(i)+g3 (i) *vx3(i)+g4 (i) *vx4 (i)
ay (i)=g2 (i) *vy2 (i) +g3 (i) *vy3 (i) +g4 (i) *vyd (i)
bz (i)=g2 (i) *vz2 (i) +g3 (i) *vz3 (i) +g4 (i) *vz4 (i)
enddo

October 4, 2004 Computation Products Group 17

Minimize GPR stores and loads from stack

O consider the common blocks and loop below:

Common/testl1/x1 (N) ,x2(N) ,x3(N) ,y1(N),y2(N),y3(N)
Common/test2/px1 (N) ,pyl (N) ,px2 (N) ,py2 (N)
Common/test3/vx2 (N) ,vx3(N) ,vx4 (N) ,vy2 (N) ,vy3(N) ,vy4 (N) ,vz2 (N) ,vz3(N) ,vz4 (N)

Common/test3/gl (N) ,g2 (N) ,g3(N) ,g4 (N) « 4
Common/test4/ax (N) ,ay (N) ,bz (N) KRR
-« ——> o ’0'
movqg -120 (%rsp) , %rls5 oot
movlps (%rl5,%rcx), %$xmmé ‘»
movhpsES|(FriSsrex)l isxmmd QO PGI 5.1.5 uses sepatate GPRs to
movq -112 (%rsp), %rlS w

movips  (%rl5,%rcx), Sxmms o address each array, even for —’s in
’ 4
movhps  8(%rl5,%rcx), *xmm5 | . Lhe same common block
, / .

*

subps $xmm4 , $xmm5 'OD A q
movg -104 (%rsp), %rl5 Accentuates register pressure in
movlps (%rl5,%rcx), %$xmmd IOOPS. One LS-DYNA IOOP had 54 GPR
movhps  8(%rl5,%rcx), %$xmm4 mov'’s to and from stack in PGI 5.1.5,
subps %xmmd , $xmm5 Intel 7.1 had 0 occuracnces of GPR
movq -96 (%rsp), %rlS movs
October 4, 2004 Computation Products Group 18
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Minimize GPR stores and loads from stack

O consider the common blocks and loop below:

Common/testl1/x1 (N) ,x2 (N) ,x3(N) ,y1(N),y2(N),y3(N)
Common/test2/px1 (N) ,pyl (N) ,px2 (N) ,py2 (N)
Common/test3/vx2 (N) ,vx3(N) ,vx4 (N) ,vy2 (N) ,vy3(N) ,vy4 (N) ,vz2 (N) ,vz3(N) ,vz4 (N)

Common/test3/gl (N) ,g2 (N),g3(N),g4 (N)

Common/test4/ax (N) ,ay (N) ,bz (N)
S —ERN-.

movaps -12000(%r9, $rdx) , $xmm4

movaps -8000 (%r9, 3rdx) , $xmm9

movaps (8r8, $rdx) , $xmm5 P =
movaps 4000 (%28, $rdx) , $xmmé O PGI 5.2.* accesses all er_rtltles in
eveEE G, e the same common block with 1 GPR
:uu:;s fg;;gg’;&g, Oraety) , Cml] U GPR register pressure in PGI 5.2.*
addl $8, 8ecx is greatly reduced. No excess rops,
subps -20000 ($r9, $rdx) , $xmm9 in comparison to Intel, are generated
movaps $xmm7, $xmm8

subps (%r9, $rdx) , $xmmd O Executable Operations from

mulps $xmm5 , $xmm4 memory are now performed - less

bubbles in FPU pipeline

October 4, 2004 Computation Products Group 19

Common Block Illustration

O Efficient code vectorization requires:
= uniform relative alignment of pointers in loops

2%

« Can be achieved via use of common blocks

<+ Span of arrays covered in each loop iteration should be a multiple of 4 or 2 in single or
double precision

. loop peeling to adjust common pointers to 16-byte aligned locations

= performing *,+,- from memory (requires 16-byte alignment)

O PGI 5.2.*% implements peeling of code in CB loops

Common/testl/vx2 (N) ,vx3(N) ,vx4 (N) ,vy2(N) ,vy3(N) ,vy4 (N) ,vz2 (N) ,vz3(N) ,vz4 (N)
Common/test2/gl (N) ,g2(N) ,g3(N) ,g4 (N)
Common/test3/ax (N) ,ay (N) ,bz (N)

do i=1,N
ax(i)=g2 (i) *vx2 (i)+g3 (i) *vx3(i)+g4 (i) *vx4 (i)
ay (i)=g2 (i) *vy2(i)+g3 (i) *vy3(i)+g4 (i) *vy4 (i)
bz (i)=g2 (i) *vz2 (i) +g3 (i) *vz3 (i) +g4 (i) *vz4 (i)
enddo
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Common Block Illustration

O Efficient code vectorization requires:
. uniform relative alignment of pointers in loops

3

< Can be achieved via use of common blocks

< Span of arrays covered in each loop iteration should be a multiple of 4 or 2 in single or
double precision

. loop peeling to adjust common pointers to 16-byte aligned locations

= performing *,+,- from memory (requires 16-byte alignment)

O PGI 5.2.* implements peeling of code in CB loops
Common/testl/vx2 (N) ,vx3 (N) ,vx4 (N) ,vy2 (N) ,vy3(N) ,vy4 (N) ,vz2 (N) ,vz3 (N) ,vzd (N)
Check relative alignment of testl,test2 and test3 common block pointers

- If pointers are aligned to 1l6-byte boundaries — JUMP TO VECTORSSE LOOP

« Scalar SSE loop +6*9 — used to align CB pointers on a l6-byte boundary

« Vector SSE loop +6*9 — used to perform most of computation

+ Scalar SSE loop +6*9 — final iterations not covered by vector SSE loop

October 4, 2004 Computation Products Group 21

Packing 4 scalars in a vector loop

1 Some vector loops require performing vector operations of scalar
data upon vector quantities:

a(i) = a(i) + b(j,i)*c(i) + d(j,i)*e(i)

®  PGI 5.1.5 does this via reading 4 floats, storing them to stack and then
reading them in a 128-bit load':

’0

’0

Create load / store dependencies

Excessive # of rops required to perform this function

Requires 8 x 32-bit movss loads / stores, 1 movaps read (14 rops)
Creates 8 bubbles down FPU pipes

X3

’0

X3

’0

2,
<

®  PGI 5.2.* does this via interleaving floats

< 4 x movss reads, 2 x Unpcklps, 1 x movlhps (11 rops)
< Creates 4 bubbles down FPU pipes

< Much shorter latency
October 4, 2004 Computation Products Group ‘ 22

© 2004 Copyright by DYNAmore GmbH E-II-11



CAE/ITH 3. LS-DYNA Anwenderforum, Bamberg 2004

Not an absolute statement but almost

L GPRs have the following advantages in loops that “only” shuffle data
around:

®  movss decodes to 2 rops, a GPR mov decodes to 1 rop

®  the FPU pipe can only perform 1 32-bit or 64-bit store per cycle while the

ALU unit can perform 2 of either

pseudo vector copies of floats can be performed using 64-bit GPRs to

perform 2 at a time, this utilizes the full throughput of the ALU and load
store unit

double precision moves should still be more efficient because the ALU

unit can perform 2 x 64-bit stores per cycle whereas the FPU can only
perform 1 x 64-bit store per cycle

caution must be taken into consideration to not generate excessive
register pressure

ALU throughput can be affected if there are many ALU ops in addition to
loads and stores occurring (add, sub, lea, etc.)

October 4, 2004 Computation Products Group
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Caveats about software prefetch

[ Prefetching can preemptively bring data into the cache in advance of
it's use, but:

®  Opteron has a very robust HW prefetcher for sequential data accesses
< HW prefetches move into L2 (12 vs 3 cycle latency compared to L1
< does not consume execution dispatch bandwidth / sw prefetches do

SW prefetches across 4KB page boundaries are dropped and suffer a 90
cycle latency penalty

SW prefetch of non-sequential data accesses offers little benefit

< only 4-8 bytes of every 64 bytes fetched is useful
« Rate of cache evictions is very high, useful data now has to be fetched from L2
MAB units in processor consumed quickly and prevents loads from occurring

3
<

SW prefetches consume 1 of the 3 execution dispatch slots per clock cycle, thus
limiting throughput through the FPU and IPC

October 4, 2004 Computation Products Group
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Less is sometimes more

[ Excessive unrolling of some classes of loops increases register
pressure:

®  Loops that do not benefit from compiler unrolling:

®

< multi-dimensional arrays in which (i, j,...) i isn’t the fastest moving index

% arrays whose index needs to be loaded to be determined, x( BIN(i) )
<+ loops large in size that exceed the # of floating-point registers

2

GPR and FP registers are spilled to memory causing:

< excess RISC operation counts compared — more work required more execution time
< address generation held up by register load dependencies

< out of order execution is limited via not being able to load data to process

U PGI 5.2 unrolls less aggressively, allowing out of order execution
within the processor to mask latency rather than compiler unrolling
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Vector Code generation enhancements

U Loops with the following constructs now vectorize in PGI 5.2 :

®  loops containing SIGN or MERGE intrinsics
large loops containing more than a preset limit of instructions

Loop-carry Reduction Elimination (LRE) interfered with some loops
vectorization

invariant IF / ELSE transformations that hoist IF / ELSE constructs not

dependent upon loop variables outside of loop replicating loop with all
cases of IF / ELSE statement

Loops that operate upon data objects > 2 GB

®  Loops in programs compiled with the -i8 switch

October 4, 2004 Computation Products Group 26
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Neon and 3-Car Models
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Neon Model Performance

LS-DYNA Neon Benchmark Performance

O1IBM x335 3.066Ghz - Myrinet B HP RX2600 Itanium 2 1.5 Ghz - Infiniband
@ 2P Opteron 1.8Ghz - Infiniband = 2P Opteron 2Ghz - Infiniband

16000 ~

14000

12000

10000 |

8000

6000 -

4000 —

LG

1P 2P 4P 8P 16P 32P

Wall Clock Time of Executio
(lower is better)

October 4, 2004 Computation Products Group ‘ 28

E-Il-14 © 2004 Copyright by DYNAmore GmbH



3. LS-DYNA Anwenderforum, Bamberg 2004 CAE/ITII

Neon Model Performance

LS-DYNA Neon Benchmark Performance Relative to Itanium 2

O1IBM x335 3.066Ghz - Myrinet B HP RX2600 Itanium 2 1.5 Ghz - Infiniband
B 2P Opteron 1.8Ghz - Infiniband = 2P Opteron 2Ghz - Infiniband
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3-Car Model Performance

LS-DYNA 3-Car Benchmark Performance

‘DIBM x335 2.8Ghz - Gigabit ® HP RX2600 Itanium 2 1.5 Ghz - Infiniband ® 2P Opteron 2Ghz - Infiniband I
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3-Car Model Performance

LS-DYNA 3-car Benchmark Performance Relative to Itanium 2

‘D IBM x335 2.8Ghz - Gigabit B HP RX2600 Itanium 2 1.5 Ghz - Infiniband ® 2P Opteron 2Ghz - Infiniband I
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AMD, the AMD Arrow Logo, AMD Opteron and combinations thereof
are trademarks of Advanced Micro Devices, Inc. HyperTransport is a
licensed trademark of the HyperTransport Technology Consortium.
Other product names used in this presentation are for identification
purposes only and may be trademarks of their respective companies.
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