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Abstract
 The Hill-Ogden elastic constitutive equation for incompressible and 
compressible rubber-like materials is presented.  The derivation and computer 
programs to determine the material constants for these equations from 
uniaxial and biaxial tests are included. These constitutive equations and the 
computer programs for determining the material constants have been 
implemented into LS-DYNA. A few examples are shown. 

 Some special cases are given to demonstrate the versatility of these 
constitutive equations.  The Mooney-Rivlin constitutive equation is a special 
case.  The Feng-Christensen viscoelastic foam model in one-dimensional 
compression, developed in 1986, can be written in a mathematical form and 
implemented in finite element codes. 

Introduction
Rubber or rubber-like materials have been increasingly used in 

engineering design.  Their designs require more numerical calculations. Yet to 
this date the development of constitutive equations has not kept up with this 
demand.  We commonly use neo-Hookean and Mooney-Rivlin constitutive 
equations to model rubber behavior. These are incompressible-elastic
constitutive equations.  Yet rubber, and in particular elastomeric foams, are 
compressible and viscoelastic. The experimental phenomena are shown in 
Figures 1, 2 and 3.   Figure 1 shows cylindrical foam being compressed.  
Figure 2 shows the stress-strain relationship.  Figure 3 shows the relaxation 
phenomenon when the compressed cylinder is held at a constant deformation 
and the time history of stress is plotted. 

In this paper the Hill-Ogden [1, 2] strain-energy density equation for 
highly compressible materials is introduced.  These constitutive equations are 
further extended to highly compressible viscoelastic materials.  Furthermore, 
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experiments as well as numerical analysis for determining the material 
constants are mentioned here. 
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Fig. 2, A typical stress-strain curve for a foam

Fig. 1, A compression test specimen
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The new constitutive equations are very general.  For example, 
Mooney-Rivlin [3] and many currently used constitutive equations for rubber-
like material are special cases.  In 1986, Feng and Christensen [4, 5] 
developed a model to study elastomeric foams. Their model accurately 
described the behavior of foam; yet, no mathematical representation was 
attempted. Therefore, it could not be implemented into finite element codes.  
As a special case, in this paper, the Feng-Christensen foam model is written in 
a mathematical form and implemented in LS-DYNA [6].

Highly compressible elastic material

For highly compressible materials the Hill-Ogden [1, 2] strain-energy 
density equation can be written: 
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Fig. 3  A typical relaxation curve for a foam 
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where Cj  and bj  are material constants and J = λ1λ 2λ 3  represents the ratio 

of deformed to undeformed volume. n  is a compressibility material constant.  

When n  is a large number, the material is incompressible.  When n  is a 
small number, the material is highly compressible, like foam.  The principal 
Cauchy stresses are 
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The nominal stresses (force per unit undeformed area) are 
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For hydrostatic state t1 = t2 = t3 = P , and λ 1 = λ 2 = λ 3 = λ , the pressure-
deformation relationship is 
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From the above equations, the shear modulus for infinitesimal strain is
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The bulk modulus for infinitesimal strain is 
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The material constant n as well as Cj  and bj  can be determined from the 

experimental data.  For uniaxial tension or compression tests, S2 = S3 = 0,

and λ 2 = λ 3 , we have
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13
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The uniaxial-Cauchy stress, 1t , and stretch ratio, 1λ , relationship is 
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The nominal uniaxial stress, 1S , is related to the stretch ratio, 1λ , by  
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Likewise, for equibiaxial tension or compression cases, 03 =S , SSS == 21 ,

and λλλ == 21 , we have 
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The Cauchy equibiaxial stress, t, is related to the stretch ratio,λ , by  
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The nominal equibiaxial stress S , is then related to the stretch ratio, λ , by  
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Hence, the constant n  can be easily determined from the relationships 
between stretch ratios; equation (7) for uniaxial tests and equation (11) for 
equibiaxial tests.  The material constants Cj  and bj  can be determined from 

either equation (10) for uniaxial tests or equation (14) for equibiaxial tests.  
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The material type 177 Ogden foam and the subroutines for determining the 
material constants in LS-DYNA are based on these equations. 

When 2001 =C , 202 −=C , 21 =b , 22 −=b and ∞=n , the 

results obtained from material type 177 is the same as the results obtained 
from material type 27, the Mooney-Rivlin material when =A  100, and =B
10.  For a numerical test, the four undeformed and deformed solid elements 
are shown in Figures 4 and 5. Four uniaxial-compressive-Cauchy-stress states, 
one obtained from material type 27, and three obtained from material type 
177, are shown in Figure 6.  Element No. 1 is obtained from material type 27, 
and elements No. 2-4 are from material type 177.  The effects of n  are shown.
For element No. 2, 20=n , a nearly incompressible material, the result is the 
same as for element No. 1.   For element No. 3, 2=n , for element No. 4, 

2.0=n .  The time scale shown in Figure 6, t = 0.0, 0.01, 0.02, 0.03, and 
0.04, correspond to 1λ  = 1.0, 0.8, 0.6, 0.4 and 0.2.   Between t = 0.04 and 

0.05, 1λ  remains 0.2. 

Fig. 4  Four undeformed solid elements
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Fig. 5  Four deformed solid elements

Fig. 6  Uniaxial-compressive-Cauchy-stress (effective stress shown) 
 from LS-DYNA 
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 When 2001 =C , 202 =C , 21 =b , 22 −=b  and n = 200, 2, 0.2 and 

0.0002, the uniaxial-compressive-Cauchy-stresses obtained from equation (8) 
are shown in Figure 7.  The LS-DYNA results are the same. 

The uniaxial-compressive-nominal stress is given in equation (10).
When 2001 =C , 202 =C , 21 =b , 22 −=b  and n = 200, 2, 0.2 and 

0.0002, the uniaxial-compressive-nominal stresses obtained from equation 
(10) are shown in Figure 8. 
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Fig. 7  Uniaxial-compressive-Cauchy-stress obtained from Eq. (8)
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Viscoelastic effect

 The viscoelastic effects are taken into account through linear 
viscoelasticity by a convolution integral of the form: 

τ
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or in terms of the second Piola-Kirchhoff stress, ijS , and Green’s strain 

tensor, ijE .
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Fig. 8  Uniaxial-compressive-nominal-stress obtained from Eq. (10)
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where )(tgijkl  and )(tGijkl  are the relaxation functions for the different stress 

measures.  These stress components are added to the stress tensor determined 
from the strain energy functional. 

 The relaxation function is represented by the Prony series: 
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The shear moduli are iG , and decay constants are iγ .

 The material type 178, viscoelastic-Hill foam, in LS-DYNA is based 
on these equations coupled with the constitutive equation for highly 
compressible elastic materials. 

 For a numerical test, the four undeformed and deformed solid elements 
are shown in Figures 4 and 9 respectively.  The elastic material constants used 
in the calculation are the same as used in the previous section, i.e., 2001 =C ,

202 −=C , 21 =b , 22 −=b .  The shear moduli and decay constants are 

i iG iγ
    1     1.0000E+02     0.1000E+00 
    2     1.0000E+02     0.1000E+01 (18)
    3     1.0000E+02     0.1000E+02 
    4     1.0000E+02     0.1000E+03 

Four uniaxial-compressive-Cauchy-stress states, two obtained from 
material type 177 and two obtained from material type 178, are shown in 
Figure 10.  Element Nos. 1 and 2 are obtained from material type 177 for 
elastic materials. Element Nos. 3 and 4 are from material type 178 for 
viscoelastic materials.  Element Nos. 1 and 3, 20=n , are nearly 
incompressible elements.  Element Nos. 2 and 4, 0.0=n , are highly 
compressible elements.  The linear ramp displacement is applied between t = 
0.0, 1λ = 1.0 and t = 0.01, 1λ  = 0.2.   Between t = 0.01 and 0.05, 1λ = 0.2, a 

constant.
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Fig. 9  Four deformed elastic and viscoelastic elements

Fig. 10  Uniaxial-compressive-Cauchy-stress (effective stress shown) from 
  LS-DYNA for the deformed elastic and viscoelastic solid elements 
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Feng-Christensen foam model

The Feng-Christensen foam model [4, 5] is a concentric hollow 
sphere.  It assumes no lateral deformation during compression.  The model 
describes well most foam during compression; however, there are no 
mathematical equations presented in their paper.  Therefore, it could not be 
used in the finite element codes.  The Feng-Christensen foam model in one-
dimensional compression is a special case of the constitutive equation 
presented in this paper, i.e., λ 2 = 1; hence, n = 0. It is now implemented in 
LS-DYNA. 

Determination of  material constants

As mentioned in the above section, the constant n  can be easily 
determined from the relationships between stretch ratios test data.  The 
material constants Cj  and bj  can be determined from relationships between 

the nominal stress and stretch ratio.   

 Subroutines for determining these constants from uniaxial or 
equibiaxial experimental data were implemented into LS-DYNA.  In order to 
check the accuracy of LS-DYNA, the test data were obtained by a numerical 
simulated experiment.  These test data were generated by Excel.  The input 
values, m , n , Cj  and bj , for Excel are: 

m = 2    n  = 0.21, 
C1= 310.0,  b1 =  2.0,    (19) 
C2 = -31.0,  b2 = -2.0. 

 LS-DYNA determines the material constants from the simulated 
experimental data.  On the basis of the simulated uniaxial experimental data, 
with m = 4  and the range of b  = -8 to 8, the determined elastic material 
constants are: 

n  = 0.21 
C1=  0.3176E+00, b1 =-0.4016E+01,
C2 =-0.3108E+02, b2 =-0.2032E+01,   (20) 
C3 =  0.3101E+03, b3 =  0.2000E+01, 
C4 =  0.7732E-03, b4 =  0.3520E+01. 

The results are almost exact.  However, due to the mathematical nature 
of the constitutive equations (2 and 3), there are many sets of roots for Cj  and 
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bj .  The users must know the limitations of the mathematical form and pick 

the constants that are physically sound.

For viscoelastic material, constants Cj , bj  and n  can be determined 

from long-term test data (t = ∞ ).  The method is the same as given in the 
above. The material constants for the relaxation )(tg  can be determined from 

relaxation test data. 

Conclusions

The constitutive equations for highly compressible elastic and 
viscoelastic materials have been presented in this paper.  These constitutive 
equations have been implemented in LS-DYNA.  Some check problems were 
also presented.  These results should have direct application to rubber-like 
materials and to elastomeric foams.  The input values for LS-DYNA will 
either be the material constants or data from experimental tests.  Methods for 
determining elastic and viscoelastic constants are also presented. 
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