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ABSTRACT

Presented is a theoretical description and computational method to calculate configu-
rational forces in the context of the finite element method. We take fully 3D-case,
dynamics and large deformations in hyper-elastic materials into account. The FE
implementation and numerical analysis of different structures demonstrates the ap-
plicability of the constitutive description. In our derivation, the Lagrangian depends on
the deformation gradient and on the position (in the reference configuration) explic-
itly, which accounts for inhomogeneous materials, e.g. materials with phase bounda-
ries, voids or cracks. In analogue to the local balance of momentum, the so-called
Eshelby stress holds a configurational force balance (balance of momentum for the
material motion problem), where configurational (or material) forces correspond to
the volume forces in the physical space. An FE description is obtained by formulating
the weak form of the configurational force balance. Thus, the configurational forces
acting on the finite element nodes may be computed as the physical boundary value
problem is solved. For the static case and small deformations, the configurational
force corresponds to the well known J-Integral in fracture mechanics.

1. INTRODUCTION

In many fields of industrial application, the mechanism and prediction of fracture pro-
cesses play a dominant role. Especially in problems of short-time dynamics, such as
crash simulation and military applications, the question of crack-propagation is still an
important field of research. The basis for the treatment of cracked structures is the
energy release rate during a virtual displacement of the crack-tip: the so-called J-
integral introduced by Rice (1968). Although many commercial FE-codes are able to
calculate the J-integral, the results are restricted to simple cases like crack mode-l,
small deformations and quasi-static loading.

In a more general context, the theory of configurational forces has been established
as a useful tool to investigate an energy change of an inhomogeneous continuum
mechanical system. Configurational forces allow the numerical simulation in a wide
range of mechanics and material science.

The idea of calculating configurational forces with finite elements goes back to the
work of Braun (1997). Especially with respect to fracture mechanics, this numerical
technique has been applied in the papers by Steinmann (2000), Steinmann, Acker-
mann and Barth (2001) and Mueller, Kolling and Gross (2002). In Mueller, Kolling
and Gross (2002), it is shown how configurational forces can be used to improve
discretization meshes and in a later work, Mueller and Maugin (2002), configurational
forces are used to simulate mixed mode crack propagation.

In the static case, the change of the energy is given by the gradient of the total po-
tential. The result is a generalised force, which is called the configurational (or mate-
rial) force and was first introduced by Eshelby (1951). The physical meaning of this
force is given by the considered problem: direction of diffusion, dislocation movement
or crack propagation among others. In the dynamic case, the change of the energy is
given by the gradient of the Lagrangian, i.e. the difference of kinetic and strain en-
ergy. This results in the so-called dynamic energy momentum tensor which, likewise,
was introduced by Eshelby. In the present paper, we recast Eshelby's ideas to derive
a generalised (configurational) balance equation. A weak formulation of this balance
equation is used to obtain the configurational forces by finite elements very effi-
ciently.

In this first application, we restrict our attention to hyper-elastic materials. However,
the extension of the theory towards plasticity and visco-elasticity is possible and has
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been carried out, e.g. see the books by Maugin (1993), Gurtin (2000) and Kienzler
and Herrmann (2000).

As some illustrative examples, we investigate the configurational forces at the
boundary of a two-phase bar during dynamic loading, a compact tension test and an
impact test using LS-DYNA.

2. BASIC EQUATIONS: THE PHYSICAL SPACE

We consider a homogeneous body B , density p,, with body forces f;. In our deri-

vations, Cartesian coordinates and the index notation are used for more clarity. The
small indices (e.g. x,) denote coordinates with respect to the actual (material) con-

figuration and the capitals (e.g. X, ) stand for the reference configuration. In a hyper-

elastic continuum, there exists a strain energy function /' = W(EJ) from which the
stresses can be obtained by derivation:

_ow ™)
iJ aF;J '
Here, F,,= Ox,/0X, is the deformation gradient and P, is the first Piola-Kirchhoff

stress-tensor. With the stress-tensor in (1), the local form of the momentum balance
can be written as

P, +1 = pv; s (2)

where v, is the (local) velocity.

The second Piola-Kirchhoff (pseudo) stress S,, = 20W / 0C,, is obtained by de-
riving the energy function with respect to the right Cauchy-Green strain tensor
C,, =F,F,,. First and second Piola-Kirchhoff stresses are related by

PKj = SKLFJ.L . The (true) Cauchy stress o;; can be obtained by forming

o :J71EKPKj :J71EKSKLF' , 3)

ij J

where J = det F, is the relative volume.

3. CONFIGURATIONAL FORCES: THE MATERIAL SPACE

Now, we generalise our continuum and consider the body B to be inhomogeneous.
For such a body, we derive a balance equation which has the same structure as the
momentum balance (2) for the homogeneous body. The Lagrangian L =7 —W of
the system is defined as the difference of the kinetic energy
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A 1
T =T(pyv,) = Ep()vivi 4)

and the strain energy W = W(EJ,XK) . Now, the strain energy depends on the

deformation gradient F, and on the position X, explicitly to consider inhomogene-
ous materials. Formulating the gradient of the Lagrangian yields

oL _or oW _oT dp,  OT dv, oW oF, oW |

oX, 0X, 0X, Op,0X, ov,0X, OF, 0X, oX,

(®)

expl
Using (1) and (4), we obtain

a_T = ivl_vl_, a_T — pOVi and ai — Pi_] (6)
o0 2" B oF,

1

and (5) can be rewritten:

ow
0X

1
Ly =>vvitoxk + PovvVik —Piliyx —

7
5 (7)

expl

Inserting v, « :Fi,K’ Fyx =Fy, the identity P, F, , = (PiJFiK)J =Py Fix
and (2) yields

1 . ow
L,K =ZTVViPox T PviFx — (PiJFiK )J + PiJ,J Fy -
2 ’ o — XK |
= P,
=
1 ow .
'L,J Oxy — (PiJFiK )J + ViV Ok —fFx ———— = —pviFix — peviFix
' 2 0X cxpl
=
1 ow .
(-L 5[(] _])iJF;'K )_J +VViPok _fiFiK - == (ViFiK )
—— 2 K lexot
2 =

8k

The second order tensor X, in the brackets of the left side is called “energy mo-

mentum tensor” and the force g, is the material force (configurational force), see
Eshelby (1970). Now, we have a compact equation

Xt 8 =P (FiKvi )A’ (8)
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which has the same structure as the momentum balance (2) and is called “configura-
tional force balance”. A further notation which also can be found in literature is “bal-

ance of pseudo-momentum”. From the definition of g, , configurational forces occur,
if:

1. The material is inhomogeneous: W = W(EJ,XK)
2. The density depends on the position p, = p,(X )
3. Volume forces exist: f; # 0

In the static case, the terms in equation (8) are simplified to X, ; + g, = 0, where

ow
Ly, =W Og; —PyFy and g = —fiFy —

K lexpl
And for small deformations, the energy momentum tensor is X, =W é'k/. —U; 0 -

In this case, the 1-component (using dx, = n,dI") of the material force acting on a
crack-tip is related to the J-integral in fracture mechanics, see Rice (1968):

J = o Idel ~u,,o.n,dl, 9)

g
oa :

where I is a path surrounding the crack-tip. The interpretation of the J-integral is the
energy release rate of the system with respect to a virtual movement da of the
crack-tip along the ligament. The usual way to calculate J is to define a path I" and
solve equation (9). The problems we are facing then, is that J is not always path in-
dependent, e.g. if we have mixed mode loading. In what follows, we show an alter-
native way to determine J consistent with the FE method.

4. FINITE ELEMENTS
4.1 Explicit Finite Element Method

In our simulations, we use the explicit solver of LS-DYNA. In this finite element code,
Newton’s equation of motion

sz x.j(t)+clj xj(t)+Kg,‘ xj(t)zpi(t) (10)

is solved via a central difference method. The matrices M i

mass, damping and stiffness of the system, p,(¢) is the external loading. For each
time step we have:

o :ﬁ(xrﬁ]_xn—]) (11)

C,.j and K,.j stand for
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o 1 ( .n+§ .n—§) 1 xn+1 _xn xn _xn-l
X' =—(x"" =X = — -
At At At At

; (12)
— - (xn+1 _an +xn-1)
(A7)
Inserting (12) and (11) in (10) at time ¢, yields
M n+1 2 n n-1 AtC n+l n-1 At 2K n
g (7 = 2] 1))+ C (3] =x)) () K
2 (13)
2
= (At) p}.
This can be rewritten with respect to the displacement x"
Mij
1 1 +
> M, + C, | x; !
(Al) l ZAI l .
(14)
n 2 n ] ] n-1
=27 (K- ) ‘[(A,y My EC]
p;
and solved after inverting Mi/ :
n+l “rl oan
x;j =My p; (19)

4.2 Material Forces

Starting point of the finite element discretization is the weak formulation of the con-
figurational force balance (8). To obtain the weak form, we multiply (8) by a test func-

tion 77, and integrate over B :

I(po (Fixvi) + 2, +8 )771< av =
(16)

—
PK

B
J‘(pOF‘iKvi)'nK +(ZKJ77K)J _EKJUK,J +gK 77[{ dV =O.
B .

Here, is called the pseudo momentum vector. Integrating by parts yields
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j_PKUK =X Mk 8 Mk dv + jZKJNJnK dA4 =0. (17)
B oB

If we consider stationary boundaries, i.e. boundaries which remain fixed, the bound-
ary integral in (17) vanishes. Now, the test function is approximated in every element

/
e =2 N 1, e, = D Nk (18)
/ !
Inserting (18) in (17) yields:

Yok [{-PN' =T N, + g N'}dv =0 (19)
! B

Since this equation has to be fulfilled for arbitrary nﬁ< , the bracket has to be zero and
the discrete material forces are given by

Gy = [ge N'dV = [BN'+ 5 N av (20)
B B

To obtain the total material force G| acting an the node |, the forces G|, of all ele-
ments adjacent to node | have to be assembled:

6L =Jak 21)
=1

With this formulation, the material forces can be calculated simply as the physical
boundary value is solved: all quantities to compute X, and P, are already known
in every time step.

4.3 Implementation into LS-DYNA: algorithm

The material forces have been implemented by the authors as a user-subroutine in
the explicit solver LS-DYNA. The basis is a hyper-elastic material as defined by the
laws of Blatz and Ko (MT 7), Mooney and Rivlin (MT 27) and Ogden (MT 77). In such

a material subroutine, all necessary quantities (F, , F,,, v,, v,, P,, ) are computed

locally in every time-step. From this,
1. calculate the energy momentum tensor ., = (W-T)0,, — P F

2. calculate the pseudo momentum vector PK = =P (F,Kvl. + F,Kv'i)

3. solve Gy = J‘P'KNI + ZKJNf, dV , e.g. via Gauss-quadrature.
B

4. assemble all material forces according to (21).
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5. APPLICATIONS

For the first application in LS-DYNA, we calculate the material forces in the situation
of a two-phase bar, a compact tension test and an impact test. The calculations are
executed under plane stress condition using Belytschko-Tsai shell elements with one
integration point both in the shell plane and in the shell thickness. All values are rela-
tive to a unit thickness because of the 2D-case.

5.1 Two-Phase Bar

As a first example, we investigate a simple bar under tension. The bar consists of
two materials which are separated by an interface. The system is sketched in Fig-
ure 1. We chose a stiffness of E;=210GPa, E,=E,/2=105GPa, I/2=h=10mm. In the
FE calculation, the Poisson ratio is zero to catch the 1D case. The load u(t) is in-
creased linearly from 0.0mm to 0.7mm in t0=0.7ms. The loading process may as-
sumed to be quasi-static. For this case, an analytical (static) solution exists:

u'(EEAE, —E,|]

G=2 > =11.67N
PIE, +E,T

Ay

A u(t)
h —— —>» G —Pp
v B 2
1Z - /2 -
|t ! -

Figure 1 two-phase bar

The results of the 2D finite element calculation are shown in Figure 2. As empha-
sized in the theoretical part, material forces always appear at the boundary of the
system and, due to the inhomogeneity, at the phase boundary.

a) two elements b) eight elements
/’ f
/ / N
5
1
Vo

Figure 2 2d-bar, 4-node-elements, material forces
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Figure 3 2d-bar, validity test, quasi-static

The physical meaning of the material forces is the direction of a possible diffusion
process: The phase boundary tries to migrate to the harder material to achieve an
energetic minimum. Figure 3 shows the temporal evolution of the forces in time. The
material force in x-direction increases monotonously till t0=0.7ms and oscillates,
then, around the analytical solution (dashed line). The average value of this oscilla-
tion gives the analytical solution (G=11.67/2=5.833N for each node in Figure 2,)).
The material force in y-direction is positive at node 5 and negative at node 1. The
resultant in y is zero for the 1D-bar.

12
10 ;. = c ‘,«"-’ ~1
7 N i * 4
_ 8 i \.*'\ ! ./-:4'_""“‘-. | CN—
£ ' ’ “\\ [
@ .I =~ bl | | ‘\
é 6 .’ f( \\ | \.‘\ P \. kY
= ¥ / G | s N 3
5 Lo ST e s N
2 Y I ~ u A
4 f- 1 | e /s { | 1 t e
/ Ny 4 t0 = 0.100ms ‘u
1 7 \1\ t ’." I
il /7 . i —_——— — 10=0050ms
Z g / | | T 1 T T T T | T 1
L I T D R I T () Poes t = 0.025ms
X // 1
0 T T . T T . .
0 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3
Time (ms)

Figure 4 2d-bar, different loading rates

In Figure 4, we vary the loading rate from 0.7ms, 0.025ms to 0.05ms. Because of the
higher kinetic energy part, a significant increase of the amplitude and the average
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value of the material force can be detected for higher loading rates. This behaviour is
important to know for the interpretation of material forces in short-time dynamics
applications.

5.2 Compact Tension (CT) Test

As a further example, we calculate the material forces acting on the crack-tip of a CT
specimen (E=210GPa). In Figure 5, the specimen is loaded at the nodes of the upper
bore hole by a displacement u(t) in y. The load is increased linearly from 0.0mm to
1.0mm in t0=0.1ms. Again, the loading process may assumed to be quasi-static.

At the lower one the nodes are translationally fixed. This results in a bending which
leads to a non-symmetric case. Thus, we have a mixed-mode loading and the mate-
rial force has both a component in x and in y-direction. A possible crack propagation
takes place in a certain angle to the x-axis (reverse to the direction of G). It should be
mentioned that, because of the singularity, the mesh surrounding the crack-tip has to
be very fine for an exact calculation of the magnitude of the J-integral. Thus, the cal-
culated material force is not exactly J. However, the direction is given and it con-
verges to J for a fine mesh, see Mueller, Kolling and Gross (2002) for such a study.
In Steinmann, Ackermann and Barth (2001), eight-node elements are used for a
SET-specimen: If interior nodes at the crack-tip are moved to the quarter position,
the exact value of the J-Integral can be obtained.

If we take the same boundary condition at both bore holes, the stress field is sym-
metric and the material force has solely a component in x-direction. Now, a possible
crack propagation takes place in the ligament. This situation is depicted in Figure 6.
In the Figures, the displacements are scaled by the factor 2.0 for a better visualisa-
tion.

u(®)

AR
HHH
(11177

e iu_il

]

Figure 5 Material forces on a CT specimen, non-symmetric case
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f u(t)

st iinaenneE

*u(t) o ’

Figure 6 Material forces on a CT specimen, symmetric case

5.3 Impact Test

As a last example, we consider a cylindrical impactor (d=10mm, m=6kg, v=10m/s,
rigid) impacting on beam (/=100mm, h=20mm, Steel) with a centrally located crack
(a=5mm). The beam is bearing supported in y-direction as given in Figure 7. For the
contact condition, we use the formulation “AUTOMATIC_SINGLE_SURFACE”.

¥
d
.

40 10

Y

10 40

A
A/

A
\

Figure 7 Impact test
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The material forces, which occur during this impact are shown in Figure 8 for the
maximum loading at t=0.24ms. Large configurational forces exist in the contact zone
of the impactor, the bearing and, of course, near the crack-tip. In each of this region,
the mesh has to be refined to increase the degree of precision. In the other regions,
the mesh may even be coarsened. The application of material forces in an adaptive
strategy is outlined in detail by Mueller and Maugin (2002). The material force at the
crack tip shows again the negative direction of a possible crack propagation. Due to
the (almost) symmetric load case, we have a mode-| crack and the material force has
only a component in y-direction.

X I 21 11 1l 1 . T
EERaRsaCATRSRLLES HHAe A H R
] . r T 1 k! ] TR
[ Fj:& $
1T ____H T i
! i FEE A
fa T 7 I T H ) jui O
I NS Ny T " i HH - 1 Hor HHHHT e
ZH'_'J‘ | L 1 T 1 T I | | e -
IT1 11 1T 1T T | ol L3 A 1 INERANE N =
i Ty
eanse
Ay,
ik

- e e
t;
1

b =
r‘ii;ﬁ ,
PP I I g
?}‘V; Y
| - T
i
1 1

Figure 8 Material forces during an impact test, t=0.24ms

Finally, the temporal evolution of the Material forces at the crack tip is shown in Fig-
ure 9. During the calculation, we plotted the material forces every 0.2ms (dotted line).
For a better impression, a SAE filter is used (solid line). The first contact of the im-
pactor takes place at {=0.06ms. Then the force increases monotonously towards the
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maximum, which is reached at t=0.24ms. After t=0.5ms the impact process is termi-
nated and the material force vanishes. The run of the curve is proportional to the
loading of the beam due to the impact-momentum.

20

Material Force (M)
1
o
(=]

=100

time step 0.2ms

-1z20 L 1 | I I { ] I | | I —— SAEFilter

-140

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time (ms)

Figure 9 Temporal evolution of the Material forces at the crack tip

6. SUMMARY AND CONCLUSIONS

The theory of configurational forces and a finite element formulation in the context of
large deformation and hyper-elasticity has been presented. Here, the discrete con-
figurational forces acting on finite element nodes are obtained consistent with the FE-
formulation. The implementation of configurational forces into the explicit finite ele-
ment code of LS-DYNA as a user subroutine has been shown. Using a two-phase
bar for which an analytical solution exists, we have shown the accuracy of the
method by using explicit integration. In the aid of a compact tension test, we pre-
sented the first step to simulate a J-integral based dynamic crack propagation with
LS-DYNA. Further applications have been implied with respect to mesh assessments
and adaptive strategies.
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