Invitation and Agenda

$12^{\text {th }}$ EUROPEAN LS-DYNA CONFERENCE

14-16 May 2019 - Koblenz, Germany

Dear LS-DYNA user community,
With this agenda we would like to invite you cordially to the $12^{\text {th }}$ European LS-DYNA Conference. This year the event will take place from 14-16 May in Koblenz, Germany. In the historical city, where the rivers Moselle and Rhine flow together, a first-class program with more than 200 presentations on all LS-DYNA applications awaits you.

In addition to the technical presentations, which will again take place 8 times in parallel, the keynote presentations by renowned speakers from industry and academia prove the high quality of the conference. This year we are pleased to welcome Niclas Brännberg (NIO), Prof. Hopperstadt (NTNU), Johan Jergeus (Volvo), Prof. Middendorf (University of Stuttgart), Mikael Palm (Husqvarna) Dr. Steven Peters (Daimler), Kishore Pydimarry (Honda), Ricardo Tejero de la Piedra (Opel), Dr. Tsuyoshi Yasuki (Toyota) as keynote speakers. Of course, the presentations of the developers from LSTC and DYNAmore are also again part of the program.

The accompanying software and hardware exhibition offers the possibility to exchange your experiences with other users. Staff from DYNAmore will also be available to answer your questions and provide tips and tricks. The popular workshops on various topics complete this year's agenda.

In addition, we offer conference accompanying seminars, which are held by experienced trainers and can be booked separately. Conference participants receive a 10\% discount on the training prices. More information on the seminars can be found at the end of this booklet.

We hope to have aroused your interest and look forward to welcoming you in Koblenz.
Sincerely yours
MOREMA

Tuesday, 14 May

08:30 Pre-Conference Workshop: Material Characterisation - From Tests to Material Cards

19:30 Get together: Food, drinks and live music in the exhibition hall

Wednesday, 15 May
06:45 Running LS-DYNA (45 min. jogging)

Thursday, 16 May

	08:30	Connections	Manufacturing II	Metallic Materials II	Optimization II	High Speed Impact V	Fiber Reinf. Polymers III	Civil Engineering	Workshop GISSMO
	10:40	Adhesive Rivets	Thermal	Material Character. II	Optimization III	High Speed Impact VI	Fiber Reinf. Polymers IV	Implicit	Workshop LS-FORM
	12:20	Lunch							
	13:30	Keynote Presentations / Closing Remarks							
	15:45	End of conferen							
Friday, 17 May									
	10:00	The 2019 THUMS European Users' Meeting							

WELCOME - KEYNOTE PRESENTATIONS

12:45	Welcome U. Franz (DYNAmore)
13:00	Recent Developments in LS-DYNA - Part I J. Wang (LSTC)
$13: 30$	In Expectation of Reduced Model for Car Crash Simulation T. Yasuki (Toyota)
14:00	Safety CAE for Real World Occupant Protection J. Jergeus, P.-A. Eggertsen, L. Jakobsson, L. Wågström, J. Östh, J. Hinder, E. Sandborg (Volvo Cars)
14:30	Sponsor Presentation: Fujitsu/Intel

T. Yasuki

Toyota

J. Jergeus Volvo Cars

14:45 Break

VEHICLE DEVELOPMENT I

15:15 Shells are Like Woman: Can't Live With Them, Can't Live Without Them P. Du Bois (Consultant)

15:40 Development of Carbon Fibre Floor Structure for Premium Electric SUV P. Bristo (NIO)

16:05 Roof-Crush Analysis of the Volvo XC40 using the Implicit Solver in LS-DYNA A. Jonsson (DYNAmore Nordic); M. Carlberg (ÅF/Volvo Cars (Consultant)); T. Eriksson (Volvo Cars)

DUMMY MODELS

Sled Tests and Simulation Results with Q10 Update Kit Euro NCAP 2020 H. Ipek (Daimler)

Q10 EuroNCAP 2020 LS-DYNA Model Development
B. Been, K. Waagmeester, M. Burleigh, A. Lakshminarayana (Humanetics Europe)

Crash Test Dummies for Automated Vehicle Development
I. Maatouki, C. Kleessen, Z. Zhou, J. Wang (Humanetics)

HUMAN MODELS \& MATH. MODELS

Multi Objective Optimization Approach for Biomedical Stent using Parametric Optimization
M. Seulin (DynaS+); P. Balu (DEP))

Material Models
D.-Z. Sun, F. Andrieux (Fraunhofer IWM)

17:30 A Comparative Study of the Hexahedral Elements in LS-DYNA for Crashworthiness Simulation S. E. Hoque, S. Scheiblhofer, S. Ucsnik (LKR Leichtmetallkompetenzzentrum Ranshofen)

17:55 Application of Vehicle Impact Simulation to Protective Barrier
D. Aggromito, J. Farley, M. Walden (Arup)

METALLIC MATERIALS I

Calibration and Application of GISSMO and *MAT_258 for Shell Element Simulations of High-Strength Steel J. Johnsen, J. K. Holmen, D. Morin, M. Langseth (Norwegian University of Science and Technology)
*MAT_258: A Through-Thickness Regularization Scheme for Shell Element Analyses - Application to Aluminium Components
D. Morin, T. Berstad, M. Costas, O. S. Hopperstad, M. Langseth (Norwegian University of Science and Technology)

A Hosford-Based Orthotropic Plasticity Model in LS-DYNA
F. Andrade (DYNAmore); T. Borrvall
(DYNAmore Nordic); P. DuBois
(Consultant); M. Feucht (Daimler)

FORMING I

The Benefit of True Fracture Strain on Material Model Parametrization M. Schneider, M. Teschner, S. Westhäuser (Salzgitter Mannesmann Forschung)

Development New MAT Applied Yoshida 6th Order Yield Function and its Verification
H. Fukiharu, T. Amaishi (JSOL)

Evaluation of Simulation Results using Augmented Reality
M. Lechner, R. Schulte, M. Merlein
(University of Erlangen-Nürnberg)

FORMING II

Simulation of Sheet Metal Forming using Elastic Dies
M. Schill (DYNAmore Nordic);
J. Pilthammar, M. Sigvant (Volvo Cars);
V. Sjöblom, M. Lind (Blekinge Institute of Technology)

Shell Models with Enhanced Kinematics for Finite Elements in Sheet Metal
Forming Simulations
T. Willmann, M. Bischoff (University of Stuttgart)

Numerical Simulation of

Electrohydraulic Forming using Coupling of ALE and Lagrangian Elements M. Woo, J. Kim (Pusan National University)

Expert Rules as a Powerful Support of the Topology Optimization Procedures of Crash Structures
Prof. A. Schumacher (University of
Wuppertal)

THERMOPLASTIC MATERIALS I

Approach for Modelling Thermoplastic Generative Designed Parts
F. Althammer (Daimler/University of Stuttgart); D. Moncayo (Daimler); Prof. P. Middendorf (University of Stuttgart)

A New Modelling for Damage Initiation and Propagation of Randomly-Oriented Thermoplastic Composites
K. Saito, M. Nishi (JSOL); S. Hayashi,
M. Kan (Honda R\&D)

A Viscoelastic-Viscoplastic Time-
Temperature Equivalence for
Thermoplastics
V. Dorléans, E. Michau (Faurecia Interior System); R. Delille, F. Lauro, D. NottaCuvier, B. Bourel, G. Haugou, H. Morvan (University Polytechnique Hauts de France)

THERMOPLASTIC MATERIALS II

Strength Assessment of an Electronic Plastic Component considering Local Fiber Orientation and Weld Lines
N. Schafet, M. Kuczynska (Robert Bosch); S. Pazour, W. Korte, M. Stojek (PART Engineering

Modelling of Thermo-Viscoplastic

 Material Behavior Coupled with Nonlocal Ductile DamageM. Nahrmann. Prof. A. Matzenmiller (University of Kassel)

Failure Prediction for Polymer Products with Short Fiber
J. Takahashi, Y. Fujita (Asahi Kasei)

Modelling of Polypropylene Subjected to Impact Loading at Low Temperatures E. Schwenke (Norwegian University of Science and Technology)

AEROSPACE

Simulation of Ballistic Tests on a Generic Gear Box to Evaluate Containment Capability
M. Zobel, M. Kober, A. Kühhorn (BTU Cottbus-Senftenberg); E. Stelldinger (Rolls-Royce Deutschland)

Design Qualification of the Jupiter Icy Moons Explorer JENI Instrument using the LS-DYNA Frequency Domain Suite M. Shanaman, S. Cooper, S. Jaskulek, C Schlemm, P. Brandt, D. Mitchell,
E. Rollend (Johns Hopkins University)

Undamped Extension of a Nose Landing Gear
H. Frey (Liebherr Aerospace); W. Lietz, U. Stelzmann (Cadfem)

Methodological Approach to the Modelling of Tyre/Ground Interaction
A. Al-Tayawe, H. Abhyankar, J. Brighton, V. Marchante-Rodriguez, G. Gent (Cranfield University)

SIMULATION DATA MANAGEMENT I

mplementation of a Method for the Generation of Representative Models of Polycrystalline Microstructures in LS-PrePost
S. Falco (Imperial College London); N. Bombace, N. Petrinic (University of Oxford); P. Brown (DSTL)

Automated Evaluation and Reporting of Simulation and Test Result Data integrated with CAE Process Workflow A. Kumar ISCALE

Development of a Customized Beam-to-Shell Element Model Mapping Tool
M. Duhovic, P. Patil, D. Scheliga, D. Schommer, L. Münch, J. Hausmann (Institut für Verbundwerkstoffe)

Compact Lightweight Steel Hood Design and Development using ACP OpDesign J. Stanik (Hyundai America Technical Center); A. Shrawan, D. Mittal,
A. Farahani (ETA)

WORKSHOP

Oasys Software

MORNING SESSIONS

RAILWAY AND COMMERCIAL VEHICLE
08:05 Full System Three-Dimensional Modelling of Rolling Stock Collision J. Kiang (SNC Lavalin)

08:30 LS-DYNA Simulations of the Impacts of a 38-Ton Heavy Goods Vehicle into a Road Cable Barrier
K. Wilde, D. Bruski, S. Burzyński,
J. Chróścielewski, Ł. Pachocki, W.

Witkowski (Gdańsk University of
Technology)

RESTRAINT SYSTEM
Virtual Testing of Curved Vehicle
Restraint Systems *
B. Fröhlich (Bundesanstalt für Straßenwesen)

08:55 Transient Dynamic Implicit Analysis for Durability Testing of School Bus Seats A. Jensen, G. Laird (Predictive Engineering)

Numerical Simulations in Vehicle Restraint System Development M. Sebík, M. Popovič (SVS FEM); M. Drdlová (Research Institute for Building Materials

FLUID-STRUCTURE INTERACTION

Modelling of the Overcasting Reinforcement Process using the LS-DYNA ICFD Solver
J. Burt, O. Tomlin (GRM Consulting); D. Howson, T. Fleet (Alvant)

Recent and Future Developments for the ICFD Solver in LS-DYNA
F. Del Pin, I. Caldichoury, R. R. Paz, C. Huang (LSTC)

FORMING III
Virtual Modeling of Forming Processes in Metal Packaging Industry I. Moldovan, M. Linnepe, L. Keßler (thyssenkrupp Steel Europe); M. Köhl (thyssenkrupp Packaging Steel)

Setting up a Hot Stamping Simulation considering Tool Heating with OpenForm K. Kassem (GNS)

Parachute Deployment Simulations using LS-DYNA ICFD Solver and Strong FSI Coupling
M. Le Garrec, A. Poncet, V. Lapoujade (DynaS+)

Springback in Assembly of Mirror Panels with Stamped Supports for Concentrating Solar Power Applications J. Pottas, J. Coventry (The Australian National University)

09:20 Break

MODEL REDUCTION \& ANALYSIS

09:40 Dimensionality Reduction of Crash and Impact Simulations using LS-DYNA C. Bach (BMW/Technical University of Munich); L. Song (BMW); T. Erhart (DYNAmore); Prof. F. Duddeck (Technical University of Munich/ Queen Mary University of London)

10:05 Implementation of LS-DYNA / QUASAR
Coupling for Model Reduction
K. Kayvantash (CADLM)

AIRBAGS

Increasing CAE Productivity - Airbag Model Verification using VisualEnvironment
A. Lerch (iSi Automotive); M. Seshadri, A. Gittens (ESI)

Airbag Folding for LS-DYNA using Generator4
L. Benito Cia (GNS)

PARTICLE METHOD

WELDING \& HEAT TREATMENT
Implicit SPH in LS-DYNA for Automotive
Water Wading Simulations
E. Yreux (LSTC)

Numerical Simulations of Vacuum

 Packed Particles using LS-DYNAP. Bartkowski, R. Zalewski (Warsaw University of Technology)

Prediction of Spot Weld Failure for Automotive Steels
J. Lim, J. Ha (Posco)

Recent LS-DYNA Developments in the Structural Conjugate Heat Transfer Solver
T. Klöppel (DYNAmore)

10:30 Comparison of Laser-Scanned Test Results and Stochastic Simulation Results in Scatter Mode Space M. Okamura, H. Oda (JSOL); D. Borsotto (Sidact)

Comparison of LS-DYNA Version 7, 9 and 11 - A View of an Airbag Supplier A. Seeger (iSi Automotive Berlin); S. Stahlschmidt (DYNAmore)

Investigation on Parameter Identification and Coarse Graining Models using Discrete Element Capability in LS-DYNA
S. Tokura (Tokura Simulation Research)

Tool Cooling Simulation for Hot Forming I. Experiments and Simulations T. Kuroiwa (JSOL)

Break

KEYNOTE PRESENTATIONS

11:20 A Fly Landed on my Bumper and my Results Changed? K. Pydimarry (Honda R\&D); A. Gromer (DYNAmore Ohio)

Towards a Virtual Laboratory for Aluminium Structures Prof. O. S. Hopperstad (Norwegian University of Science and Technology) Sponsor Presentation: Oracle Sponsor Presentation: AMD

K. Pydimarry Honda

Prof. O. S. Hopperstad NTNU
N.N.*
(Rheinmetall Landsysteme)

Determination of Impact Loads for a Tracked Military Vehicle during a Crash Scenario
B. Balaban (FNSS Savunma Sistemleri)

Armor Steel Impacted by Projectiles with Different Nose Shapes - Numerical Modelling
T. Fras, N. Faderl (French-German

Research Institute of Saint-Louis);
C. C. Roth, D. Mohr (ETH Zurich)

THERMOPLASTIC MATERIALS III

Failure Modeling of Unreinforced and Fiberreinforced Thermoplastics P. Reithofer, B. Hirschmann, T. Schaffranek (4a engineering)

Constitutive Model of Filled Elastomers Capable of Capturing Mullins Effect, Hysteresis, Induced Anisotropy and Permanent Set - Part I: Model Theory \& Implementation
R. Chandrasekaran, M. Hillgärtner, M. Itskov (RWTH Aachen University); M. Müller, F. Burbulla (Dr. Ing. h.c. F. Porsche)

Cont.: - Part II: Experiments \& Validation M. Hillgärtner, R. Chandrasekaran, Mikhail Itskov (RWTH Aachen University); M. Müller, F. Burbulla (Dr. Ing. h.c. F. Porsche)

FIBER REINFORCED POLYMERS I

Simulation Software Transversal Development of a TP Based Fiber Reinforced Composite Material Law B. Eck (Faurecia Clean Mobility); J. Lacambre (DYNAmore France); Prof. P. Rozycki (Ecole Centrale de Nantes); M. Mbacke, T. Peret (IRT Jules Verne)

Design and Material Characterization of Reinforced Plastics for Secondary Structural Load Paths in an Early Development Phase
D. Moncayo (Daimler); M. Cyperling (Mercedes-Benz Werk); G. Dumitru,
T. Graf (DYNAmore); D. Coutellier,
H. Naceur (Université Polytechnique Hauts-de-France)

Prediction of Load-Bearing Capacity of Composite Cylinders with Impact Damage
A. Cherniaev (University of Windsor);
V. Komarov, S. Pavlova, A. Pavlov (Samara University)

Refrigerator Door Gasket Material Modeling and Magnetic Force Interpretation using LS-DYNA
N. D. Padghan, S. V Jagtap (Whirlpool of India)

Refrigerator Door Handle Side Impact in LS-DYNA Explicit
S. V. Jagtap, D. Thorat (Whirlpool Of India)

Testing and Validation of Dryer in Drop and Impact Simulations S. Sridhar, S. Vishwakarma (Whirlpool of India)

Dishwasher Rack Loading Test to Fail in LS-DYNA Implicit K. C. Kusupudi (Whirlpool of India)

Leakage Path Prediction for Active Vent Door System in LS-DYNA Implicit
K. C. Kusupudi (Whirlpool of India)

Failure Prediction of Plastics in Ball Impact Test
K. C. Kusupudi, S. Patil (Whirlpool of India)

Rubber Wear Estimation using LS-DYNA

C. Desai, S. Vishwakarma (Whirlpool of India); M. Schmidt, M. Hudak
(Whirlpool Slovakia); S. Ostdiek (Whirlpool); D. Gupta (Whirlpool EMEA)
Failure Modeling of Expanded Polystyrene (EPS) Foam
C. Desai, S. Sridhar, S. Vishwakarma (Whirlpool of India)

SIMULATION DATA MANAGEMENT II
Postprocessing of the 2020 EU-NCAP
Frontal Impact Test in META
N. Tzolas, D. Siskos (BETA CAE Systems)

Animator4: Extended Representation of LS-DYNA Properties in Postprocessing C. Kaulich, S. Hanson (GNS)

Multi Material Modeling with ANSA: An Application in the Automated Assembly Process in FORD
T. Fokylidis (BETA CAE Systems); U. Tunc, H. Wuestner (Ford-Werke); N. Pasligh (Ford Forschungszentrum Aachen)

WORKSHOP

Material Parameter Identification with LS-OPT
K. Witowski (DYNAmore)

In this workshop a short introduction to LS-OPT will be given, and the application of LS-OPT for calibration of material parameters will be presented.

The new LS-OPT version 6.0 features for the usage of digital image correlation data for calibration of material parameters will be discussed by means of an application example.

WORKSHOP

Software from BETA CAE Systems

 BETA CAE SystemsThe workshops feature both informative and how-to knowledge with demonstrations of the latest features from experts.

The aim is to provide the attendees with insights, limits and merits of the topic. It facilitates the understanding by showcasing simple examples that explain the methods. Besides the presentation there will be time for interactions between the presenters and the audience.

N.N.

(Oracle)
LS-DYNA on Demand License
U. Göhner (DYNAmore)

Leveraging Rescale's Cloud HPC Simulation Platform to Run LS-DYNA Models and Accelerate Design Exploration: Examples and Case Studies F. Treheux (Rescale)

Propagation using 2D to 3D Mapping
D. A. Powell, D. Bogosian (Baker Engineering and Risk Consultants); L. Schwer (Schwer Engineering \& Consulting Services)

AFTERNOON SESSIONS

	KEYNOTE PRESENTATIONS		
13:40	Machine Learning as a Tool for Engineers S. Peters (Daimler)		
14:10	Virtual Vehicle Development at NIO N. Brännberg (NIO)		
14:40	Challenges in Occupant CAE: From Sled Test Simulation to Full Vehicle Crash R. Tejero de la Piedra (Opel Automobile)		
		S. Peters Daimler	N. Brännberg NIO

15:10 Break

ELECTRIC VEHICLE I

15:40 Numerical Modeling and Prognosis of the Dynamic Response of High Voltage Components in Electric Cars
M. S. Ridene (Daimler)

16:05 Lithium-Ion Battery Models and Thermal Management in LS-DYNA
K.-S. Im, Z.-C. Zhang, G. Cook Jr. (LSTC)

Motion Control Simulation by Direc Connection between LS-DYNA-MATLAB/ Simulink
T. Hayakawa (Itochu Techno-Solutions)

Design and Validation of Pedestrian Headform Finite Element (FE) Model using LS-DYNA as per AIS 100 GTR 9 N. A. Kulkarni, S. R. Deshpande, R. S. Mahajan (The Automotive Research Association of India)

MATERIAL CHARACTERIZATION I

Development of a New Method for Strain Field Optimized Material Characterization
M. Benz, J. Irslinger, M. Feucht (Daimler); P. DuBois (Consultant); M. Bischoff (University of Stuttgart)

Efficient Characteristic Identification
Work of Plastic Materials for Crash
Analysis with 3-Point Bending Machine
O. Ito, Y. Nakagawa, K. Kaneda,
N. Matsuura, Y. Ueda (Honda R\&D)

Automatized Kinetic and Strainfield

 Based Calibration for a ThermoplasticMaterial Model using High Speed Tensile Tests
S. Schilling, P. Suppinger, P. Blome (Autoliv)

ISOGEOMETRIC I

Enabling the Analysis of Topologically Connected Multi-Patch Trimmed NURBS Shells in LS-DYNA
S. Hartmann (DYNAmore); L. Li , A. Nagy M. Pigazzini, D. Benson (LSTC)

Explicit Isogeometric B-Rep Analysis on Trimmed NURBS-Based Multi-Patch
CAD Models in LS-DYNA
L. Leidinger (BMW)

The ANSA / LS-DYNA Approach for IGA Simulations
L. Rorris, I. Chalkidis, A. Vafeidis (BETA CAE Systems); A. Nagy (LSTC); S. Hartmann (DYNAmore)

ISOGEOMETRIC II

Isogeometric Analysis using the *IGA_ INCLUDE BEZIER Keyword in LS-DYNA M. Sederberg (Coreform); M. Scott (Brigham Young University/Coreform)

Comparative Evaluation of Isogeometric Analysis and Classical FEM with Regard to Contact Analysis
Z. Naveed, A. Kühhorn, M. Kober
(BTU Cottbus-Senftenberg)

Courtesy of
Courtesy of
Daimler AG

Courtesy of Husquarna AB

Courtesy of
Courtesy of
Knorr-Bremse Systeme für Shin Systeme für Schienenfahrzeuge GmbH

Courtesy of
Jaguar Land Rover Limited

Courtesy of BMW Group

Courtesy of Thiot Ingenierie

Numerical Methods for the Analysis of Behind Armor Ballistic Trauma P. Zochowski (Military Institute of Armament Technology)

Bolted Joint Connections of FRPComponents in Submarines Subjected to Underwater Shock
A. Rühl, B. Özarmut, B. Hennings, O. Nommensen, A. Paul (thyssenkrupp Marine Systems)

Fluid-Composite Structure-Interaction in Underwater Shock Simulations B. Özarmut, A. Rühl, B. Hennings, O. Nommensen, A. Paul (thyssenkrupp Marine Systems)

Numerical and Experimental

 Investigation of SPH, SPG and FEM for High Velocity Impact Applications M. Becker, M. Seidl (French-German Research Institute of Saint-Louis); M. Mehl (University of Stuttgart);M. Souli (University of Lille)

Improvement of Satellites Shielding
under High Velocity Impact using Advanced SPH Method
T. Legaud, M. Le Garrec, N. Van

Dorsselaer, V. Lapoujade (DynaS+)
Random Vibration Analysis for a Gunner Platform Frame using Experimental Data
S. E. Yilmaz (FNSS Savunma Sistemleri)

FIBER REINFORCED POLYMERS II
Development of a User-Defined Material Model for Sheet Molding Compounds D. Schommer, M. Duhovic, J. Hausmann (Institut für Verbundwerkstoffe); H. Andrae, K. Steiner (Fraunhofer ITWM); M. Schneider (Karlsruhe Institute of Technologie)

Adaptive Mesh Segmentation for Modelling Dynamic Delamination Initiation and Propagation in Thick Composite Laminates
J. Selvaraj, L. Kawashita, G. Allegri,
S. Hallett (University of Bristol)

Numerical Investigation of Parameters Affecting Crush Mode of Triggered FRP Tube
R. Akita (Itochu Techno-Solutions Corporation); A. Koike (Isuzu Advanced Engineering Center); A. Yokoyama (Kyoto Institute of Technology)

WOOD \& FOAMS

Comparison of Different Material Models in LS-DYNA $(58,143)$ for Modelling Solid Birch Wood
G. Baumann, Graz, F. Feist (University of Technology); S. Hartmann (DYNAmore); U. Müller (University of Natural

Resources and Applied Life Sciences);
C. Kurzböck (Virtual Vehicle Research Center)

Modeling the Energy Absorption
Characteristics of Wood Crash Elements
E. F. Akbulut Irmak (Paderborn

University)

Modeling and Validation of Static and Dynamic Seat Cushion Characteristics D. V. Dorugade (Concordia University); P.-E. Boileau (McGill University)

HPC I

Dynamic Load Balancing
B. Wainscott (LSTC)
E. Yreux, C. Tsay, J Wang ILSTC

Leveraging LS-DYNA Explicit and Implicit on Latest Intel Technologies N. Meng (Intel); J. Wang, R. Lucas (LSTC)

HPC II

The Effect of HDR InfiniBand on

LS-DYNA Simulations

O. Maor, G. Shainer, Y. Qin, D. Cho
(HPC-AI Advisory Council)

Mainframe Computer Connector Wear

Correlation and Prediction Analysis
S. Canfield, B. Notohardjono, R. Ecker,
S. Khambati (IBM)

WORKSHOP

Solution Explorer in LS-PrePost - a GUI for Nonlinear Implicit FE T. Borrvall (DYNAmore Nordic)

The evolvement of multiphysics capabilities in LS-DYNA has made it a very powerful, albeit somewhat complicated, simulation product. To this end, the Solution Explorer was introduced to simplify modeling setup in fluid mechanics, and this has now been complemented with a framework for nonlinear implicit mechanics. The vision of the Solution Explorer is to combine simplicity and power in an integrated pre- and post-environment, and this workshop presents its current state. We cover pre- and postprocessing for single and multiple cases, in hope that it will provide a clear picture of its future potential.
with SCALE products
M. Thiele (SCALE)

The workshop gives an overview of the SCALE SDM products such as LoCo, CAViT and Status.E.

There will be a discussion on how to benefit from SCALE solutions as a user or project manager. The application of selected uses cases will be presented within live demos. Examples of typical CAE workflows and process automation using SCALE SDM applications are introduced.

A lively discussion at the end of the workshop is very welcome to investigate a potential integration of SDM software in your environment.

Courtesy of
Ford Forschungszentrum
Aachen GmbH

Courtesy of
Dr. Ing. h.c. F. Porsche AG

Courtesy of
Autoliv \& Volvo Cars

Opel Automobile GmbH

Courtesy of
Courtesy of
Honda R\&D

Courtesy of
Volvo Car Corporation

CONNECTIONS

08:30 Development of Simple Connection Model for Plastic Parts in Low-Speed Crash Simulation
N. Matsuura, Y. Nakagawa, O. Ito,
K. Kaneda, Y. Ueda (Honda R\&D)

08:55 Modeling of Bolts using the GISSMO Model for Crash Analysis
F. Schauwecker (Daimler/University of Stuttgart); M. Feucht, M. Beck D. Moncayo (Daimler); F. Andrade (DYNAmore); Prof. P. Middendorf (University of Stuttgart)

09:20 Multi-Scale Numerical Simulations of Structural Joints with Flow-Drill Screws using a Virtual Material Calibration M. Costas, D. Morin, M. Langseth (Norwegian University of Science and Technology)

09:45 Estimation of Spot Weld Design Parameters using Deep Learning A. Pillai (TU Dresden)

10:10 Break

ADHESIVE/RIVETS

10:40 Simulation of Self-Piercing Riveting Process and Joint Failure with Focus on Material Damage and Failure Modelling A. Rusia (Daimler/University of

Stuttgart); M. Beck (Daimler);
Prof. S. Weihe (University of Stuttgart)

11:05 Modelling of Steel-Aluminium Components using Structural Adhesive and Self-Piercing Rivets
D. Morin, M. Reil, T. Berstad, M. Costas M. Langseth (Norwegian University of Science and Technology)

MANUFACTURING II

Simulation of Process Dependend Properties with MAT_254 Demonstrated for the ,Bake-Hardening of an 6 xxx Aluminum Alloy
M. Merten (DYNAmore)

METALLIC MATERIALS II
Numerical Simulation of Low Velocity Impact on Sandwich Structures with Steel Skins and Polymer Foam Cores T. Berstad, A. Reyes, T. Børvik
(Norwegian University of Science and Technology)

Simulating Time and Temperature dependent Artificial Ageing Process of an AA6xxx-T4 Aluminium Sheet Material using Mat 254
S. Jurendic (Novelis)

Bake-Hardening Effects, Arbitrary Image Data and Finite Point-Set Analysis Results made Accessible with envyo C. Liebold (DYNAmore)

Considering Manufacturing Induced Inhomogeneity in Structural Material Models (VMAP)
B. Jilka, P. Reithofer (4a engineering)

THERMAL

Validation of a Thermal Radiation Problem using *BOUNDARY_ RADIATION_ENCLOSURE
G. Blankenhorn, R. Grimes, F.-H. Rouet (LSTC); S. Malcom (Honda R\&D)

Validation of a Newly Developed CrossFlow High Temperature Heat Exchanger (HT-HE) using Multiphysics Simulation M. Rübsam, Prof. R. Altensen, Prof. M. Pitzer (Technische Hochschule Mittelhessen)

MATERIAL CHARACTERIZATION II

New Testing in Support of LS-DYNA MAT 224 Material Model
A. Gilat, J. Seidt, N. Spulak, J. Smith
(Ohio State University]

High-Strength Alloyed Steel: Modelling
Dynamic and Multiaxial Loading Conditions
A. Trippel (Institut für nachhaltige technische Systeme); W. Harwick (Fraunhofer EMI)

Influence of Strain Rate on Deformation and Failure Behavior of Sheet Metals under Shear Loading
S. Klitschke, A. Trondl, F. Huberth
(Fraunhofer IWM)

MAT 291: A New MicromechanicsInspíred Model for Shape Memory Alloys J. Karlsson (DYNAmore Nordic)

A Full-Field Calibration Approach to Identify Failure Parameters of a HSSteel
S. Cavariani, A. Scattina (Politecnico di Torino); S. Scalera (DYNAmore Italia); D. De Caro, M. M. Tedesco, F. D'Aiuto, S. Bianco, A. Luera, D. Ghisleri (C.R.F.); C. Ilg (DYNAmore)

Estimation of Stress Triaxiality from Optically Measured Strain Fields S. Conde, F. Andrade, M. Helbig, A. Haufe (DYNAmore); M. Feucht (Daimler)

A New Method for Oscillation-Free Determination of Material Properties during High Speed Tests R. Grams (University of Siegen)

Crash Analysis and Design Optimisation of a Side Impact Beam using Dynamic Topology Optimisation and eGISSMO Failure Model
J. M. Schlosser, S. Mouchtar, W. Rimkus R. Schneider (Hochschule Aalen)

Design Topology of Structures under
High Inertial Load using LS-TaSC
G. N. Fish, X. Quinn (NSWC)

A Cohesive Model for Ice and its Verification with Tensile Splitting Tests H. Herrnring, L. Kellner, J. M. Kubiczek S. Ehlers (Hamburg University of Technology)]

Using a Rolls-Royce Dummy Engine Model to Evaluate Scalability of LS-DYNA Thermal Solvers
G. Blankenhorn, J. Wang, R. Grimes, F.-H. Rouet (LSTC); J. Ong (Rolls-Royce)

Simulation of the Temperature Distribution in Ship Structures for the Determination of TemperatureDependent Material Properties
J. M. Kubiczek, H. Herrnring, L. Kellner,
S. Ehlers (Hamburg University of

Technology)

OPIMIZATION II

LS-TaSC 4: Designing for the Combination of Impact, Statics and NVH K. Witowski (DYNAmore)

Topology Optimization of a U-Bend Tool using LS-TaSC
D. Aspenberg (DYNAmore Nordic);
N. Asnafi (School of Science \& Technology)
daptive Sampling using LS-OPT A. Basudhar (LSTC)

Material Calibration using LS-OPT: A Longest Common Subsequence Method for Matching Curves with Differing Lengths
S. DuBois (DYNAmore); N. Stander,
A. Basudhar (LSTC)

First Steps Towards Machine-Learning Supported Material Parameter
Determination
D. Koch, A. Haufe (DYNAmore)

Modelling of Bonded Component Tests, Comparing MAT_240 to State of the Art Models
J. F. Berntsen, D. Morin, A. Holm

Clausen, M. Langseth (Norwegian
University of Science and Technology)

Lunch break

KEYNOTE PRESENTATIONS - FAREWELL
Fusion of Composite Simulation with Enhanced Data Acquisition and Data Science: Opportunities and First Approaches Prof. P. Middendorf (University of Stuttgart)
Drop and Impact Simulation of Handheld Outdoor Products with LS-DYNA and Digimat M. Palm (Husqvarna Group)

Recent Advances in Finite Element and Meshfree Methods for Material Failure Analysis Y. Wu (LSTC)

Recent Developments in LS-DYNA - Part II T. Erhart (DYNAmore); T. Borrvall (DYNAmore Nordic)

Farewell
T. Münz (DYNAmore)

M. Palm

Husqvarna Group

Prof. P. Middendorf University of Stuttgart
End of conference

Blast Loading of Concrete: Simulations of Tubular Structures Subjected to Internal Detonations
M. Kristoffersen, T. Børvik (Norwegian University of Science and Technology); K. O. Hauge (Norwegian Defence Estates Agency); A. Minoretti (Norwegian Public Roads Administration)

Study on Blast and Ballistic Loading of Auxetic Composite Sandwich Panels with LS-DYNA
N. Novak, L. Starčevič, M. Vesenjak, Prof. Z. Ren (University of Maribor)

Ballistic Behaviour of UHMWPE

Composite Material: Experimental Characterization and Numerical Simulation
H. Abdulhamid, P. Deconinck, P.-L. Héreil, J. Mespoulet (Thiot-Ingenierie)

Modelling Back Face Deformation of
Woven Layered Composite Targets under Oblique Impact
M. Seidl, N. Faderl, M. Becker (FrenchGerman Research Institute of SaintLouis)

HIGH SPEED IMPACT VI

Experimental and Numerical Study of Submillimeter-Sized Hypervelocity Impacts on Honeycomb Sandwich Structures
F. Plassard (Thiot-Ingenierie); H. Abdulhamid, P Deconinck, P-L Héreil, J. Mespoulet (Thiot-Ingenierie); C. Puillet (CNES)

Numerical Modeling of Honeycomb

 Structure Subjected to Blast Loading M. Stanczak (French-German Research Institute of Saint-Louis/Lorraine University); T. Fras, L. Blanc (FrenchGerman Research Institute of SaintLouis); P. Pawlowski (Polish Academy of Sciences, Warsaw/French-German Research Institute of Saint-Louis; A. Rusinek (Lorraine University)High Velocity Impact Response of High Strength Aluminum using LS DYNA G. Bașaran, E. Özbayramoğlu, O. Bütün, E. Öney (FNSS Savunma Sistemleri); Prof. E. Gürses (Orta Doğu Teknik Üniversitesi)

IRIS 3 Program: Study of the Vibrations Induced by a Missile Impact on a Reinforced Concrete Structure N. Van Dorsselaer, T. Legaud, V. Lapoujade (DynaS+); B. Richard (Institut de Radioprotection et de Sûreté Nucléaire)

FIBER REINFORCED POLYMERS III

Composites in High Voltage Applications
C. Weinberger, M. Rollant
(4a engineering)

Polypropylene Composites under Impact: Anisotropy, Mapping and Failure Criteria in Simulations, and Validation on a Part for Building and Construction Industry M. Nutini, M. Vitali (Basell Poliolefine Italia, a LyondellBasell Company); M. Benanti, S. Formolo (Polytech)

A Simple Material Model for Composite Based on Elements with Realistic Stiffness
T. Tryland (Sintef Manufacturing)

Energy Absorption, Crashworthiness and Damage Development in 2D Woven Composites
R. Lombarkia (Université Laval)

FIBER REINFORCED POLYMERS IV
Composite Forming Simulation with Introduction to J-Composite/Form Modeler Version 2.0
M. Nishi, S. Wang, S. Dougherty (JSOL); X. Zhu (LSTC)

New Methods for Compression Molding Simulation and Component Strength Validation for Long Carbon Fiber
Reinforced Thermoplastics
S. Hayashi (JSOL); C.T. Wu, W. Hu, Y. Wu X. Pan, H. Chen (LSTC)

Modeling of Microcellular Short Fiber Reinforced Plastics for Pedestrian Safety Analysis
M. Landervik (DYNAmore Nordic);
U. Westberg (Volvo Cars); S. Gastl
(Borealis Polyolefine)

CIVIL ENGINEERING

Drag Force Simulation on Blast Loaded Fabric Roof
M. Hadjioannou, E. Sammarco,
M. Barsotti (Protection Engineering Consultants)

Seismic Soil-Structure Interaction Analysis using LS-DYNA
M. Miloshev (Mott Macdonald)

Use of LS-DYNA for Structural Fire Engineering
E. Rackauskaite, G. Flint, A. Maani, A. Temple, P. Kotsovinos (Arup)

Low-Velocity Impact Behaviour of Plain Concrete Beam
D. Memon (Ghent University);
D. Lecompte (Royal Military Academy of Brussels)

IMPLICIT
DDAM Analysis with LS-DYNA Y. Huang, Z. Cui (LSTC)

FEM-BEM Coupling with Ferromagnetic Materials
T. Rüberq, L. Kielhorn, J. Zechner (Tailsit)

New Options in Frequency Domain Analysis and Fatigue Analysis with LS-DYNA
Y. Huang (LSTC)

Running Jet Engine Models on
Thousands of Processors with LS-DYNA Implicit
C. Ashcraft, R. Grimes, R. Lucas,
F.-H. Rouet (LSTC); J. Dawson, T.-T. Zhu
(Cray); E. Guleryuz, S. Koric (NCSA);
J. Ong, T. Simons (Rolls-Royce)

WORKSHOP

Failure Prediction in Crash

Simulations with the GISSMO Model
F. Andrade (DYNAmore)

This workshop is indicated to all LS-DYNA users who want to take their first steps regarding failure modeling in crash simulations.

The subject will be addressed during the workshop where relevant aspects concerning failure prediction will be reviewed and the application of the GISSMO model for such simulations will be demonstrated.

SPONSORS

Platinum

ninel fuirisu

AMDa ORACLE

Gold

80m

Oasys
LS-DYNA ENVIRONMENT
The Software House of ARUP

SCALE]
IT-Solutions for CAE

EXHIBITORS

4a engineering
ARUP
BETA CAE Systems
CADLM
DatapointLab
DYNAmore

DynaWeld
e-Xstream engineering
Fujitsu
GNS
GNS Systems
GOM Ges. für Optische Messtechnik

Intel
LSTC
Oracle
Rescale
SCALE
Predictive Engineering

SIDACT
T-Systems
Universität Erlangen-Nürnberg

THE 2019 THUMS EUROPEAN USERS' MEETING

17 May 2019, Koblenz, Germany

THUMSTM

JSOL is delighted to announce The 2019 THUMS European Users' Meeting. THUMS, the Total Human Model for Safety for use with LS-DYNA is being rapidly adopted by users worldwide. We invite you to join us and share in THUMS technical information.

Venue:	Koblenz Kongress - Rhein-Mosel-Halle Julius-Wegeler-Straße 4 56068 Koblenz-Germany www.koblenz-kongress.de
Organizer: \quadJSOL Corporation www.jsol.co.jp/english	
Regsitration: \quadwww.jsol-cae.com/en/event/usersevent/2019/thums/ A seperate registration is required.	

Date:
Course fee:
Location:
Lecturers from: 4a engineering, GOM, Shimadzu, DYNAmore

In the workshop, live measurements of static and dynamic tensile tests will be performed. Furthermore, the workshop includes the evaluation of the test data and shows possible approaches for the parameter identification of material cards.

Date: $\quad 9-10$ May
Course fee: 1,200 Euro*
Location: Stuttgart, Germany
Lecturer: I. C̦aldichoury (LSTC)
This course provides an introduction to the incompressible fluid solver (ICFD) in LS-DYNA. It focuses on the solution of CFD problems, where the incompressibility constraint may be applied, e. g. ground vehicle, aerodynamics, hemodynamics, freesurface problems, ship hydrodynamics, etc. The solver may run as a stand-alone CFD solver, where only fluid dynamics effects are studied, or it can be coupled to the solid mechanics solver to study loosely or strongly coupled fluid-structure interaction (FSI) problems.

Date: 13 May

Course fee: 600 Euro*
Location: Koblenz, Germany
Lecturer: Y. Huang (LSTC)
The objective of the training course is to introduce the frequency domain vibration, fatigue and acoustic features of LS-DYNA to users, and give a detailed look at the application of these features in vehicle NVH simulation. This course is recommended for engineers who want to run NVH or other frequency domain vibration, fatigue and acoustic simulation problems with LS-DYNA. This course is useful for engineers and researchers who are working in the area of vehicle NVH, aircraft/spacecraft vibro-acoustics, engine noise simulation, machine vibration testing and simulation, etc. Please note: This regular 2-day course was condensed to a one day course without workshop examples.

Date: 17 May
Course fee: 525 Euro*
Location: Koblenz, Germany
Lecturer: A. Haufe (DYNAmore)
This seminar is a collection of different topics on nonlinear aspects surrounding LS-DYNA. Emphasis is directed towards element technology and the specific elements implemented in LS-DYNA. In addition, adaptive schemes for nonlinear problems are presented. Since more and more implicit features are included in LS-DYNA, another part of the class is dealing with implicit solver technology for nonlinear problems. Please note: This regular 2-day course was condensed to a one day course without workshop examples.

Introduction to SPG Method for Manufacturing and Material Failure Analysis

Date: 13 May
Course fee: 600 Euro*
Location: Koblenz, Germany
Lecturer: Y. Wu (LSTC)
This one-day class will introduce the smoothed particle Galerkin (SPG) method and its application in manufacturing and material failure analysis. The SPG method is developed for modeling large deformation and material failure in semi-brittle and ductile materials in three-dimensional solid structures, in which a bond-based failure mechanism is utilized to model material failure. This method can be used to bridge the Lagrangian FEM and is exclusively available in LS-DYNA. The class will provide the fundamental background, LS-DYNA keywords, practical applications (in analyzing relatively low speed manufacturing processes such as metal cutting, FDS, SPR and high velocity impact penetration on concrete and metal targets) with some experimental validations and latest develnnments

Date: 17 May

Course fee: 525 Euro*
Location: Koblenz, Germany
Lecturer: C. Liebold, T. Klöppel (DYNAmore)
Besides standard plastic materials, more and more short and long fiber reinforced plastic materials are used to manufacture automotive components, aircraft parts, sports equipment etc. Since the local properties of this group of materials are highly dependent on the production process, not only new material models are necessary, which allow to consider the complex load bearing capabilities and damage mechanisms of these materials properly, but also new modeling techniques allowing to close the simulation process chain for these materials. In this course, material models being available in LS-DYNA for SFRP and LFRP components introduced and discussed. Since the consideration of the manufacturing process of such components plays an important role for a predictive structural analysis, different possibilities to consider process simulation results using the software tool ENVYO are shown. Thereby, several homogenization strategies and the respective input parameters will be discussed and illustrated in application examples.

Date:
Date: 17 May
Course fee: 600 Euro
Location: Koblenz, Germany
Lecturers: P. Du Bois (Consultant), L. Schwer
(Schwer Eng. \& Consulting Services)
This class focuses on the application of LS-DYNA to modeling explosives. LS-DYNA simulations involving explosives can be modeled on several engineering levels from simple application of equivalent pressure histories via *LOAD_BLAST_ENHANCED, explicit inclusion of explosive charges using Equations-ofState and detonation via *IN-ITIAL_DETONATION, and detonation of explosive due to impact using *EOS_IGNITION_AND_GROW-TH_OF_REACTION_ IN_HE. The analyst selects the appropriate degree of model sophistication to satisfy the intended use of the model results.

The modeling methods are illustrated through case studies with sufficient mathematical theory to provide the user with adequate knowledge to then confidently apply the appropriate modeling method.

This training class is intended for the LS-DYNA analyst possessing a comfortable command of the LS-DYNA keywords and options associated with typical Lagrange and Multi-Material Arbitrary Lagrange Eulerian (MM-ALE) analyses. The training class will attempt to provide the analyst with the additional tools and knowledge required to model explosives for a range of applications. The theory and illustrations portions of the class will benefit LS-DYNA users and non-LS-DYNA users alike.

Date:
 22 May

Course fee: 525 Euro*
Location: Stuttgart, Germany
Lecturers: K. Witowski, C. Keisser (DYNAmore)
The use of new materials, such as plastics, composites, foams, fabrics or high-tensile steels, demands the application of highly complex material models. These material formulations are generally associated with numerous material parameters. The optimization program LS-OPT is ideally suited for identifying these parameters. In the identification process, an automatic comparison is carried out between the experimental results and the simulation results of LS-DYNA. Thereafter, the error between experiments and simulations is minimized.

In this seminar, a brief introduction in LS-OPT is given with a focus on the application of LS-OPT to determine material parameters. No prior knowledge about optimization or the application of LS-OPT is required.

Date: $\quad 20-21$ May
Course fee: 1,100 Euro*
Location: Stuttgart, Germany
Lecturer: L. Schwer (Schwer Eng. \&
Consulting Services)
Constitutive models for concrete and geomaterials (rock and soil) are typically based on the same mathematical plasticity theory framework used to model common metals. However, the constitutive behavior of concrete and geomaterials differs from that of metals in three important ways:

- They are (relatively) highly compressible, i.e., pressure-volume response;
- Their yield strengths depend on the mean stress (pressure), i.e. frictional response; and
- Their tensile strengths are small compared to their compressive strengths.

These basic differences give rise to interesting aspects of constitutive modeling that may not be familiar to engineers trained in classical metal plasticity.

Courtesy of Schwer Engineering

Date: 23-24 May
Course fee: 1,050 Euro*
Location: Stuttgart, Germany
Lecturers: F. Andrade (DYNAmore),
M. Feucht (Daimler)

This seminar will discuss issues related to the adjustment of material models considering the failure, which can sometimes be relatively complex. The seminar intends to look at the complete picture, reaching from the approach to test design to the actual creation of a material card using LS-DYNA, thus reflecting the entire verification and validation process.

Date: $\quad 20-21$ May
Course fee: 1,050 Euro*
Location: Stuttgart, Germany
Lecturer: F. Andrade (DYNAmore)

Plenty of material models are available in LS-DYNA for describing the mechanical behavior of metallic materials. However, a profound understanding of the adopted material model is crucial for obtaining reasonable and reliable FE simulation results.

The aim of this class is to give practical guidelines about the application of the most commonly used material formulations. The focus will be especially on the underlying basic theory as well as on the assumptions made for the corresponding material formulations. Moreover, besides the practical information about particular input formats and the relevance of special settings, the algorithmic background of the various models will also be highlighted. Finally, diverse applications for the most commonly used metallic material models in LS-DYNA will be illustrated with the help of simple examples.

Date: $\quad 23$ May
Course fee: 525 Euro*
Location: Stuttgart, Germany
Lecturers: D. Kessler (DYNAmore)
The PRIMER preprocessor provided by our partner Arup is a high-performance solution to process and control LS-DYNA models. In addition to the range of features usually offered by a preprocessor, PRIMER can be used to implement very specific LSDYNA settings, such as almost all available contact options, special joints or highly complex material models. PRIMER has been specially and exclusively designed for LS-DYNA as an FE solver. In many cases, PRIMER is also applied to check LS-DYNA models for errors or to remove superfluous entries that may cause problems. In addition, the program offers a range of special properties to model occupant safety simulations, such as dummy positioning, seat adjustment, seatbelt fitting, or airbag folding.

In this seminar the practical use of PRIMER is arranged for the participant. All important functions are described and demonstrated in the context of a Workshops. On the basis of many training examples the participant learns the safe operation for different areas of application.

The event is organised in collaboration with Ove Arup Systems, the developer and provider of PRIMER.

* 10% discount for conference participants. All prices plus VAT. Seminar fees include class notes, lunch, and drinks during the breaks. No reduced student places available.

Online registration at
www.dynamore.de/sem-ko-e

ORGANIZATION

Venue

Koblenz Kongress - Rhein-Mosel-Halle
Julius-Wegeler-Straße 4
D-56068 Koblenz, Germany
www.koblenz-kongress.de
Traveling to Koblenz
Parking spaces:
More than 1,250 underground parking spaces are available within walking distance of the two event locations Rhein-Mosel-Halle and Kurfürstliches Schloss.
Input into the navigation system:
Julius-Wegeler-Str. 4, 56068 Koblenz, Germany
By plane
Frankfurt Airport (approx. 110 km)
There is airect train connection from Frankfurt Airport to Koblenz
Frankfurt-Hahn Airport (approx. 80 km) and
Cologne-Bonn Airport (approx. 100 km)
Airport Düsseldorf (approx. 160 km)
By public transport
Stop Rhein-Mosel-Halle, Line 6, 8, 9, 10
The Rhein-Mosel-Halle can be reached on foot from the train station after a 15-minute walk (direction Rheinanlagen).

Accommodation

A limited number of reduced rooms for conference participants can be ordered through a central hotel room booking service. Please complete the booking form (pdf) on our website and send it to the following adress by 1 April at the latest:
Koblenz Congress
Carina Schneider, Julius-Wegeler-Str. 4, 56068 Koblenz
Tel.: +49 (0)261-91481-10, Fax: +49 (0)261-91481-22
E-Mail: schneider@koblenz-kongress.de
Participant fees
Participants from industry: 690 Euro (640 Euro early bird ticket before 1 April) Participants from academia: 540 Euro (490 Euro early bird ticket before 1 April) All prices plus VAT if applicable.
Fees include conference attendance, conference proceedings, gala dinner, lunches, coffee breaks, and attendance of the get together.

Hardware and software exhibition
More information under www.dynamore.de/exhibition2019.

Accompanying Seminars
The seminars will only take place if more than six attendees register.

CONFERENCE ORGANIZERS

The conference will be organized by

In association with

Registration
Please use the the registration form, send an E-Mail to conference@dynamore.de or register online at www.dynamore.de/reg2019-e.

Conference language
English
Cancellation fees
In case of cancellation by the participant

- until one month before the conference starts: free of charge
- up to two days before the conference starts: 50%

From two days and no shows: 100\%
Replacement participants will be accepted.

Contact

DYNAmore GmbH
Industriestr. 2, D-70565 Stuttgart, Germany
Tel.: $\quad+49$ (0) 711 -459600-0
Fax: $\quad+49$ (0) $711-459600-29$
E-Mail: conference@dynamore.de
More information
www.dynamore.de/conf2019
D) N A

MORI
NorDic

DYNAmore Gesellschaft für FEM Ingenieurdienstleistungen mbH
Industriestr. 2
70565 Stuttgart, Germany
Tel.: +49 (0)711-459600-0
Fax: +49 (0)711-459600-29
E-Mail: info@dynamore.de
www.dynamore.de
Subsidiaries in Sweden, France, Italy, Switzerland and USA

Livermore Software Technology Corp. (LSTC)
7374 Las Positas Road
Livermore, CA, 94551 USA
Tel.: +1-925-449-2500
Fax: +1-925-449-2507
www.lstc.com

