Particles as Discrete Elements in LS-DYNA: Interaction with themselves as well as Deformable or Rigid Structures

N. Karajan¹, E. Lisner¹, Z. Han², H. Teng², J. Wang² ¹ DYNAmore GmbH, Stuttgart, Germany ² LSTC, Livermore, USA

11th LS-DYNA Forum 2012 10. October 2012, Ulm

Outline

- Introduction and Motivation
- Discrete-Element Method in LS-DYNA
- Examination of the Parameters

- Sample Applications
- Extension to Bonded Particles
- Conclusion

1

Introduction and Motivation

Granular Media

- Numerical Simulations Help to Design
 - Storage
 - Silos
 - Piles
 - Transportation
 - Conveyor belts/ screws
 - Pumps
 - Processing
 - Sorting
 - Mixing/ Segregation
 - Filling
 - Hopper/ funnel flow
- Numerical Methods
 - Discrete-Element Method (DEM)
 - Finite-Element Method (FEM)

The Discrete-Element Method in LS-DYNA

- Definition of the Discrete Elements
 - Particles are approximated with spheres via
 - *PART, *SECTION_SOLID
 - Coordinate using *NODE and with a NID
 - Radius, Mass, Moment of Inertia

$$M = V\rho = \frac{4}{3}\pi r^{3}\rho \qquad I = \frac{2}{5}Mr^{2} = \frac{8}{15}\pi r^{5}\rho$$

*ELEMENT_DISCRETE_SPHERE_{OPTION}									
+2+	34	+5+	6+	7+					
PID MAS	S INERTIA	RADII							
4 570.271	0 6036.748	5.14							
5 399.009	2 3328.938	4.57							
6 139.124	0 575.004	3.21							
-+2	+3		4+5-	+6					
Х	Y		Z TC	RC					
-29.00	-26.8	8.	7 0	0					
-21.00	-24.8	18.3	2 0	0					
-27.00	-14.7	21.3	2 0	0					
	ETE_SPHERE_{OPT 	ETE_SPHERE_{OPTION} +234 PID MASS INERTIA 4 570.2710 6036.748 5 399.0092 3328.938 6 139.1240 575.004 +23 X Y -29.00 -26.8 -21.00 -24.8 -27.00 -14.7	RETE_SPHERE_{OPTION} +2+3+45+- PID MASS 14 570.2710 6036.748 5.14 5 399.0092 3328.938 4.57 6 139.1240 575.004 3.21 +2	RETE_SPHERE_{OPTION} +2+3+4+5+ PID MASS INERTIA RADII 4 570.2710 6036.748 5.14 5 399.0092 3328.938 4.57 6 139.1240 575.004 3.21 -+2+					

The Discrete-Element Method in LS-DYNA

- Definition of the Discrete Elements
 - Particles are approximated with spheres via
 - *PART, *SECTION_SOLID
 - Coordinate using *NODE and with a NID
 - Radius, Mass, Moment of Inertia

$$M = V\rho = \frac{4}{3}\pi r^{3}\rho \qquad I = \frac{2}{5}Mr^{2} = \frac{8}{15}\pi r^{5}\rho$$

Density is taken from *MAT_ELASTIC

*ELEN	*ELEMENT_DISCRETE_SPHERE_VOLUME									
\$	+1	+2-	+3-	4	+5-	+	6+	7		
\$#	NID	PID	MASS	INERTIA	RADII					
	30001	4	570.2710	6036.748	5.14					
	30002	5	399.0092	3328.938	4.57					
	30003	6	139.1240	575.004	3.21					
*NODI	2									
\$+-	1	+	2	+3	+	4	+5	+6		
\$#	NID		Х	Y		Z	TC	RC		
3(0001	-29	.00	-26.8		8.7	0	0		
30	002	-21	.00	-24.8		18.2	0	0		
30	0003	-27	.00	-14.7		21.2	0	0		
50	0000	21	• • • •	± 1 • /		~ + • ~	U			

Definition of the Contact between Particles

- Mechanical contact
 - Discrete-element formulation according to [Cundall & Strack 1979]

Extension to model cohesion using capillary forces

*CONTROL_DISCRETE_ELEMENT									
\$	-+1	+2	+3		+5	+6	-+7	+8	
\$#	NDAMP	TDAMP	Fric	FricR	NormK	ShearK	CAP	MXNSC	
	0.700	0.400	0.41	0.001	0.01	0.0029	0	0	
\$#	Gamma	CAPVOL	CAPANG						
	26.4	0.66	10.0						

- Possible collision states
 - Depends on interaction distance

$$d_{\text{int}} = r_1 + r_2 - |\mathbf{x}_1 - \mathbf{x}_2|$$

$$(\bigcirc)$$

$$d_{\text{int}} \le 0$$

$$0 < d_{\text{int}} \le d_{\text{crit}}$$

$$d_{\text{int}} > d_{\text{crit}}$$

¢	_+1	+2	_+3		+6	+7	8
Y	· ±		1 5	·		· /	1 0
\$#	NDAMP	TDAMP	Fric	FricR	NormK ShearK	CAP	MXNSC
	0.700	0.400	0.41	0.001	0.01 0.0029	0	0

Normal spring constant

$$K_n = \begin{cases} \frac{\kappa_1 r_1 \kappa_2 r_2}{\kappa_1 r_1 + \kappa_2 r_2} \operatorname{Norm} K & : \text{ if } \operatorname{Norm} K > 0\\ \operatorname{Norm} K & : \text{ if } \operatorname{Norm} K < 0 \end{cases}$$

Tangential spring constant relative to normal spring constant

 $K_t = K_n$ ShearK

STC

Default values: NormK = 0.01, ShearK = (2/7) *NormK

Damping constants as a ratio of the critical damping

$$D_n = \text{DAMP } \eta_{\text{crit}} = \text{DAMP } 2 \sqrt{\frac{m_1 m_2}{m_1 + m_2} K_{n/t}}$$
 with $0 \le \text{DAMP} \le 1.0$ (!)

- Influence of the normal damping during particle contact
 - particle is dropped from 1m height
 - values for NDAMP are altered

Frictional Contribution

Friction force based on Coulomb's law of friction

 $F_{fr} \leq \mu_{fr} F_n$

*C0	*CONTROL_DISCRETE_ELEMENT								
\$	-+1	+2	+4	-+5	+6	-+7	+8		
\$#	NDAMP	TDAMP	Fric FricR	NormK	ShearK	CAP	MXNSC		
	0.700	0.400	0.41 0.001	0.01	0.0029	0	0		

Friction coefficient

- Fric = 0.0
 - vields a central force system for each particle
 - $\hfill\square$ reduction to 3 translations as DOF
- Fric > 0.0
 - □ yields a general force system for each particle
 - □ full 6 DOF are enabled (3 translations and 3 rotations)
- Extension to model rolling resistance
 - FricR > 0.0
 - $\hfill\square$ typical values for sand grains around 0.01
 - $\hfill\square$ larger values may account for rough particles or other particle shapes

- Capillary Force Contribution
 - Idea of a liquid bridge with fixed volume [Rabinovich et al. 2005]
 - Only activated for $0 < d_{\rm int} \le d_{\rm crit}$

Involved parameters

- \square CAP = 0
 - \square dry particles
- CAP = 1
 - □ "wet" particles
 - additional input card is required
- Gamma > 0.0: Liquid surface tension
- CAPVOL > 0.0: Volume fraction of the liquid bridge with respect to 1/10 of the contacting sphere volumes
- CAPANG > 0.0: Contact angle between liquid bridge and sphere

9

Definition of the Particle-Object Contact I

- Classical nodes-to-surface contact definition
 - Well-proven and tested contact definition

Contact between

- □ SSTYPE= 4 : slave node set
- □ MSTYPE=() : segment set (0), shell element set (1),
 - part set (2), part (4)
- Benefits of the contact definition
 - static and dynamic friction coefficients
 - penalty scale factors
 - works great with MPP
- Drawbacks of the contact definition
 - $\hfill\square$ not possible to apply rolling friction
 - $\hfill\square$ friction force is applied to particle center

Definition of the Particle-Object Contact II

New contact definition for discrete elements

Contact between

- □ STYPE=0: slave node set STYPE=1: slave node
- □ MTYPE=0: part set MTYPE=1: part
- Damping determines if the collision is elastic or "plastic" $0 \le \text{DAMP} \le 1.0$ (!)
- Benefits of the contact definition
 - □ static and <u>rolling</u> friction coefficients
 - $\hfill\square$ friction force is applied at the perimeter
 - $\hfill\square$ possibility to define transportation belt velocity via ${\tt LCVxyz}$
 - □ easy to set up!
- Drawbacks of the contact definition
- $\hfill\square$ no possibility to tweak via penalty scale factors
- $\hfill\square$ sometimes problems with MPP

Examination of the Parameters

Static Friction Benchmark

- PEBBLE Test of Idaho National Laboratory
 - J. J. Cogliati & A. M. Ougouag: In PHYSOR 2010 Advances in Reactor Physics to Power the Nuclear Renaissance, Pittsburgh, Pennsylvania (2010)

Critical coefficients of friction

$$\mu_{\rm sph/sph} = \sqrt{2} - 1 \approx 0.41421$$

$$\mu_{\rm sph/surf} = \frac{1}{5(1+\sqrt{2})} \approx 0.08284$$

Case to pass the test

 $\hfill\square$ stable pyramid for $\,\mu_{\rm sph/sph}+\epsilon\,\,$ and $\,\,\mu_{\rm sph/surf}+\epsilon\,\,\,\,\forall\,\,\epsilon\leq 0.001$

- LS-DYNA simulation
 - Pyramid becomes unstable for
 - \square a) $\epsilon_{
 m sph/surf} = 0.000007$
 - $\hfill\square$ b) $\epsilon_{\rm sph/sph}=0.00017$
 - Test is well passed!

Biaxial Compression Test

- Standard geomechanics test to determine material parameters
 - Granular specimen (3300 particles) wrapped in latex
 - Pressure is applied to the side surfaces
 - Bottom, back and front surfaces are fixed
 - Top surface is displacement driven
- LS-DYNA simulation
 - Force versus displacement diagram

Funnel Flow

- Variation of the parameters in
 - *CONTROL_DISCRETE_ELEMENT
 - *DEFINE_DE_TO_SURFACE_COUPLING

\$+-	1	2-	3	4	l5
RHO	0.80E-6	2.63E-6	2.63E-6	2.63E-6	5 1.0E-6
P-P Fric	0.57	0.57	0.57	0.10	0.00
P-P FricR	0.10	0.10	0.01	0.01	0.00
P-W FricS	0.27	0.30	0.30	0.10	0.01
P-W FricD	0.01	0.01	0.01	0.01	0.00
CAP	0	0	1	1	1
Gamma	0.00	0.00	7.20E-8	2.00E-6	5 7.2E-8
\$+-	1	2-	3		5

Examination of the Parameters

Sample Applications

Drum Mixer I

- 12371 particles with two densities
 - Green: foamed clay
 - Blue: sand

- Drum Mixer II
 - 6640 particles of the same kind
 - Fringe color: particle velocity
 - White lines: particle path

Hopper Flow

- Problem description
 - Rigid silo walls
 - 350 x 150 x 25 mm
 - $\hfill\square$ shell elements 2mm thick
 - 17000 rough particles
 - \square radius from 1.5 3 mm
 - $\hfill\square$ static & rolling friction of 0.5
 - Gravity-driven outflow

- Problems to avoid
 - Ratholing
 Arching

Sample Applications

Drop of a Particle-Filled Ball from 1m Above the Rigid Ground

- Large deformations demand for a coupled solution
 - Inside: 1941 particles (dry sand)
 - Outside: 1.8 mm thick visco-elastic latex membrane

Bulk Flow Analysis

Introduction of a particle source and "sink"

*DEFINE_DE_INJECTION

- possibility to prescribe
 - location and rectangular size of the source
 - mass flow rate, initial velocity
 - min. and max. radius

*DEFINE_DE_ACTIVE_REGION

definition via bounding box

Problem Description

- Belt conveyor
 - Deformable belt
 - Transport velocity
 - Contact with rigid supports
- Generated particles
 - Plastic grains

Extension to Bonded Particles

Introduction of *DEFINE_DE_BOND

- All particles are linked to their neighboring particles through Bonds
- Bonds represent the complete mechanical behavior of Solid Mechanics
- Bonds are calculated from the Bulk and Shear Modulus of materials
- Bonds are independent of the DEM
- Every bond is subjected to
 - Stretching, bending
 - Shearing, twisting

The breakage of a bond results in Micro-Damage which is controlled by a prescribed critical fracture energy release rate

First Benchmark Test with Different Sphere Diameters

- Pre-notched plate under tension
 - Quasi-static loading
 - Material: Duran 50 glass
 - Density: 2235kg/m³
 - Young's modulus: 65GPa
 - Poisson ratio: 0.2
 - Fracture energy release rate: 204 J/m²
- Case I
 - 4000 spheres r = 0.5 mm
 - Crack growth speed: 2012 m/s
 - Fracture energy: 10.2 mJ
- Case II
 - 16000 spheres r = 0.25 mm
 - Crack growth speed: 2058 m/s
 - Fracture energy: 10.7 mJ
- Case III
 - 64000 spheres r = 0.125 mm
 - Crack growth speed: 2028 m/s
 - Fracture energy: 11.1 mJ

Time = 0.025099 max displacement factor=10 **Crack branching Path** Fragmentation Time = 0.025099 max displacement factor=10 **Energy Density Energy Density**

Extension to Bonded Particles

- Pre-Cracked specimen
 - Loading plates via *CONTACT_CONSTRAINT_NODES_TO_SURFACE
 - Pre-cracks defined by shell sets

Extension to Bonded Particles

Conclusion

- Introduction of loose particles
 - Particle definition with volume option
 - Particle-particle interaction
 - contact stiffness, damping and friction
 - cohesion
 - Particle-structure interaction
 - deformable or rigid finite-element structures
 - contact stiffness, damping and friction
 - Particle source and "sink" for bulk flow analysis
- Extension to bonded particles
 - Linear-elastic solid behavior
 - Brittle fracture

Thank you for your attention!

