

Menschmodelle- Dynamore Stuttgart June 2016

Model based Head & Neck injury criteria

Deck C, Meyer F, Bourdet N, Willinger R.

Rémy WILLINGER remy.willinger@unistra.fr Strasbourg University Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (Icube) Equipe Matériaux multi-échelles et Biomécanique (MMB)

- Critical issue with current head injury criteria
- State of the Art head FE modelling and validation
- Focus on head trauma database and accident reconstruction
- Tissue level head injury criteria and risk assessment tool
- Neck FE modelling and validation
- Whiplash injury criteria based on modelling

HUMAN SEGMENTS

PROTECTIVE SYSTEMS

Head tolerance curve proposed by Wayne State University given linear head accelerations versus time : WSUTC (1966). Head injuries occur in the part upper the curve.

Part I : tests on cadavers, skull failure considered as head injury.

Part II : intracranial pressure recorded on anatomical subjects and animals, head injury : commotion.

Part III : tests on human volunteers, no head impact, head kinematics recorded during sled tests.

HEAD INJURY CRITERION (1972) : HIC DEFINITION

Head mass = 4.58 kg; HIC = 1000

$$HIC = \max_{(t_1, t_2)} \left\{ (t_2 - t_1) \left[\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} a(t) dt \right]^{2.5} \right\}$$

CONTEXT OF HEAD PROTECTION STANDARDS

- <u>Inside a car (1970)</u>
 - Dummy head; HIC 1000
- <u>Outside pedestrian (2005)</u>
 Headform; V=11 m/s ;
- Motorcyclist (2002)
 - Headform; V = 7.5 m/s ;
 - e = 5 cm ; HIC 2400 ; Γ = 275G

e = 7 cm ; HIC 1000 à 1700

- <u>Cyclist</u>
 - Headform; V = 5.42 m/s ;
 - e = 2.5 cm ; **Γ= 250G**
 - ... for a same human head !

LIMITATIONS OF EXISTING STANDARDS

- UNIVERSITÉ DE STRASBOURG
- Poor correlation with real world observation
- HIC was defined for a frontal impact...and is not direction dependent
- Not injury mechanism related
- No consideration of rotational acceleration
- No criteria for children (6 YOC, 3 YOC...)

It is well known that brain is sensitive to rotational acceleration

since Holbourn (1943)

This phenomenon has essentially been addressed qualitatively with animal or physical models.

Ommaya et al. (1967, 1968), Unterharnscheidt (1971), Ono et al. (1980), Gennarelli et al. (1982), Newman et al. (1999,2000).....

By using **Finite Element Head Models** it was expressed quantitatively how dramatic the influence of the rotational acceleration is on intracerebral loading.

Deck et al. (2007), Kleiven et al. (2007), Zhang et al. (2001)...

A number of experimental in vivo investigations emphasized that **axonal strain** was the most realistic mechanism of DAI (Bain and Meaney, 2000, Meythaler *et al.*, 2001, Morrison *et al.*, 2003)

GLOBAL PARAMETERS (ROTATION)

Authors		Global parameters
Gennarelli, Thibault, Ommaya	25 Monkeys alive	1800 rad/s ² à 7500 rad/s ²
(1972)		60 rad/s à 70 rad/s
Pincemaille et al.	Boxers training	13600 rad/s ² à 16000 rad/s ²
(1989)		28 rad/s à 48 rad/s
Gennarelli et al.	More than 100 primates alive	15000 rad/s ²
(1982)		150 rad/s
Margulies et al.	Based on Gennarelli et al.	16000 rad/s ²
(1989)	(1982)	46.5 rad/s

No agreement

Global parameters-Combined

$$G(t) = \stackrel{\text{\acute{e}t}}{\underset{\text{\acute{e}t}}{\overset{\text{\acute{e}t}}{\Theta}}} \frac{a(t) \overset{\text{ö}^{m}}{\vdots}}{a_{c} \overset{\text{\acute{e}t}}{\emptyset}} + \stackrel{\text{\acute{e}t}}{\underset{\text{\acute{e}t}}{\overset{\text{\acute{e}t}}{\Theta}}} \frac{a(t) \overset{\text{ö}^{n} \overset{\text{\acute{u}t}}{\overset{\text{\acute{e}t}}{\Theta}}}{\overset{\text{\acute{e}t}}{\overset{\text{\acute{e}t}}{\Theta}}} + \stackrel{\text{\acute{e}t}}{\underset{\text{\acute{e}t}}{\overset{\text{\acute{e}t}}{\Theta}}} \frac{a(t) \overset{\text{\acute{e}t}}{\overset{\text{\acute{e}t}}{\Theta}} \overset{\text{\acute{e}t}}{\overset{\text{\acute{e}t}}{\Theta}}}$$

GAMBIT:

Newman et al 1986

n = m = s = 2.5, a_c =250g, α_c = 25.000 rad/s²

HIP: $HIP = ma_x \hat{0} a_x dt + ma_y \hat{0} a_y dt + ma_z \hat{0} a_z dt +$ Newman et al 2000 $I_{xx} a_x \hat{0} a_x dt + I_{yy} a_y \hat{0} a_y dt + I_{zz} a_z \hat{0} a_z dt$

PRHIC:

Kimpara et al. (2011)

$$PRHIC = \left[\left\{ \frac{1}{(t_2 - t_1)} \int_{t_1}^{t_2} HIP_ang(t) dt \right\}^{2.5} (t_2 - t_1) \right]_{max}$$

Global parameters - Rotation

BrIC:

Takhounts et al. 2011
$$BrIC = \frac{\omega_{max}}{\omega_{cr}} + \frac{\alpha_{max}}{\alpha_{cr}}$$

Takhounts et al. 2013

$$BrIC = \sqrt{\left(\frac{\omega_x}{\omega_{xC}}\right)^2 + \left(\frac{\omega_y}{\omega_{yC}}\right)^2 + \left(\frac{\omega_z}{\omega_{zC}}\right)^2}$$

RIC:

Kimpara et al. (2011)

$$\operatorname{RIC} = \left[(t_2 - t_1) \left\{ \frac{1}{(t_2 - t_1)} \int_{t_1}^{t_2} \alpha(t) dt \right\}^{2.5} \right]_{\max}$$

- There is no relevant combined, time and direction dependent brain injury criteria in terms of global head acceleration
- A number of tentatives exist
- There is a need to set properly :
 - A tissue level brain injury criteria
 - A measure of the quality of an injury criteria

STATE OF THE ART FE HEAD MODELS AND VALIDATION

HEAD FE MODELS AROUND THE WORLD

VALIDATION DATA

Nahum & Trosseille (1977) (1992)

Impact area : front Impactor : Cylinder with padding Impact velocity : 6.3 m/s Duration : 6.2 ms

Intra-cranial behaviour validation

Hardy (2001)

Impact area : occipital Impactor : Cylinder Impact velocity : 2 m/s Duration : 20 ms

Yoganandan (1994)

Impact area : vertex Impactor : Rigid sphere Impact velocity : 7.3 m/s Duration : 2 ms

Skull validation

Sarron (1999) Back face effect Under Balistic conditions

BENCHMARK PROCEDURE : NAHUM INPUT

<u>Input :</u>

A 5.6 kg cylindrical impactor (with padding).
An initial velocity about 6.3 m/s
Boundary conditions : Head free

Interaction force between the head and the impactor

NAHUM IMPACT NUMERICAL RESULTS

•Impact force, head acceleration

Some oscillations can appear in head acceleration results

NAHUM IMPACT NUMERICAL RESULTS

STATISTICAL ANALYSIS WITH ADVISER

Normalised Integral Square Error (NISE) measures

The NISE provides a means of comparing the differences between two time history responses

$$NISE_{total} = NISE_{phase} + NISE_{shape} + NISE_{amplitud}$$
$$NISE_{total} = 1 - \frac{2R_{xy}(0)}{R_{xx}(0) + R_{yy}(0)}$$

Xi = a point i of a data set (eg measured time history)Yi = a point i of another data set (eg predicted time history)N = number of discretized points in each data set

$$R_{xy}(0) = \frac{1}{N} \sum_{i=1}^{N} X_i Y_i$$
$$R_{xx}(0) = \frac{1}{N} \sum_{i=1}^{N} X_i X_i$$
$$R_{yy}(0) = \frac{1}{N} \sum_{i=1}^{N} Y_i Y_i$$

UNIVERSITÉ DE STRASBOURG

The Russel's Error measures (RUS)

The Russel's error measures provide a robust and non-biased means of assessing the differences in the characteristics of two functions. The relative magnitude error is determined according to:

$$m = \frac{A - B}{\sqrt{AB}} \qquad A = \sum_{i=1}^{N} f_1(i)^2 \qquad B = \sum_{i=1}^{N} f_2(i)^2$$

The phase correlation between two functions is determined according to:

$$p = \frac{C}{\sqrt{AB}} \qquad \qquad C = \sum_{i=1}^{N} f_1(i) f_2(i)$$

STATISTICAL ANALYSIS : RESULTS

Brain acceleration and pressure

- THUMS, SUFEHM and KTH models provided a comparable level of accuracy for brain acceleration
- Pressure prediction was at similar level of accuracy for all models

Brain displacement

- THUMS, SUFEHM and KTH presented best accuracy
- NHTSA and TUE were less accurate

Skull deflection

- Only THUMS and SUFEHM models predicted an accurate skull deflection as well as skull rupture

STRASBOURG UNIVERSITY FE HEAD MODEL

[Kang, 1997]

SUFEHM 98 Accident reconstructions Tolerance limits

50th percentile adult skull

Digitalisation

[Deck, 2004]

<u>Skull Model Improvement</u>

- Refined meshing
- Skull thickness variation
- Inclusion of reinforced beams

• Improvement of non-linear material characteristics

SUFEHM PRESENTATION

Identification of Skull mechanical parameters

Determination and characterization of the mechanical behavior of biological tissues and damage

➢ For tensile fiber mode

moduli (Mpa)

ent

Differ

[Wood et al. 1969, McElhaney et al. 1970, Hubbard et al. 1971, Peterson and Dechow, 2002]

Os plat du crâne

Brain mechanical properties

Determination and characterization of the mechanical behavior of biological tissues and damage

□ High discrepancy of values for shear modulus

□ Confirms the stiffest in vitro results (shear modulus ~10KPa at 100Hz)

- Marjoux, D., Bourdet, N., and Willinger, R. 2009. Computation of axonal elongations: towards a new brain injury criterion. International Journal of Vehicle Safety, Vol.4 No 4, 271
- Chatelin S., Deck C., Renard F., Kremer S., Heinrich C., Armspach JP, Willinger R : 2011 <u>Computation of axonal elongation in head trauma</u> finite element simulation. J of Mech. Behavior of Biomed Material, V4, 1905-1919.
- Cloots, R.J.H., van Dommelen, J.A., Nyberg, T., Kleiven, S., Geers, M.G., 2011. Micromechanics of diffuse axonal injury: <u>influence of axonal orientation and anisotropy</u>. Biomechanics and Modeling in Mechanobiology. 10, 3, 413-422.
- Wright R, K Ramesh : 2011, An axonal strain injury criterion for traumatic brain injury, Biomechanics and Modeling in Mechanobiology, , 1-16.
- Cloots RJH, van Dommelen JAW, Kleiven S, Geers M, 2013. Multi-scale mechanics of traumatic brain injury: predicting axonal strains from head loads. Biomechanics and Modeling in Mechanobiology, 12(1):137-150.
- Giordano, C, Kleiven, S, 2014. Evaluation of <u>Axonal Strain as a Predictor for Mild Traumatic</u> Brain Injuries Using Finite Element Modeling. Stapp Car Crash Journal, Vol. 58
- Sahoo D., Deck C., Willinger R.:2014 Development and <u>validation of an advanced anisotropic</u> <u>visco-hyperelastic human brain</u> FE model. Journal of the Mechanical Behavior of Biomedical Materials, 2014, vol.33, 24-42
- Sahoo D., Deck C., Willinger R.:2015 Axonal strain as <u>brain injury predictor</u> based on real world head trauma simulation. IRCOBI 2015 and AAP 2016

DTI OF THE BRAIN

COUPLING OF DTI DATA

data (in red) and brain FEM (in blue)

NEW ENHANCED BRAIN MODEL

MODEL BASED HEAD INJURY CRITERIA REAL WORLD HEAD TRAUMA SIMULATION

PUBLISHED TISSUE LEVEL INJURY CRITERIA

32

Local Parameters (FE)

Local tissue level brain injury criteria are based on SIMon, KTH, WSU, THUMS and SUFEHM finite element head models:

- MPS
 Max principal strain
- SCC Strain in Corpus Callosum
- VM strain
 Max VM strain
- SSR Strain*Strain rate
- Pmax Max pressure
- VM stress Max VM stress
- CSDM Cumulative Strain Damage Measure
- MAS Maximum axonal strain

INJURY CRITERIA FROM THE LITERATURE

ACCIDENTS RECONSTRUCTIONS

METHODOLOGY

Database (125 cases)

Germany Hannover **GIDAS (28)**

England FIA (6)

HEAD TRAUMA DATABASE

Experimental Skull fracture tests

- Accelerometer packages are attached to the skull using screws.
- Drop techniques for impact with successively increasing input energies until fracture.

Identification of skull constitutive law

Impactor mechanical parameters	s definition			()
[Gent et al., 1958]	Parameters	40D Flat	90D Flat	90D Cylindrical
[Gray et al., 1991]	Mass density (Kg/m ³)	4230	4930	4930
[Pampush et al., 2011]	Young's Modulus (MPa)	9	12	12
	Poisson's ratio	0.43	0.43	0.43

Numerical replication and skull mechanical parameters adjustment

DETAILED ACCIDENT RECONSTRUCTION

MODELING OF THE ACCIDENTS

Unistra modeling

The contact force functions used on each part of the car are extracted from the study of Martinez *et al.*,2007

EXAMPLE : DESCRIPTION OF ACCIDENT CASE

Unistra modeling

Impact Conditions

Car velocity ~ 45 km/h Cycle Velocity ~ 5.5 km/h Cycle/Car angle ~ 6° Vehicle deceleration ~ 6,5 m/s²

Victim

Man, 91 years old, Failure parieto-occipito-temporal Coma with a Glasgow score of 5

EXAMPLE : KINEMATICS RECONSTRUCTION

Unistra modeling

$$V_{resultant}$$
 = 10.9 m/s
 V_{normal} = 10.0 m/s
 $V_{tangential}$ = 4.4 m/s

Loadcase 1 : Time = 0.000000 Frame 1

Two impacts

- on windshield with the left shoulder,
- on pillar with head area occipito-parieto-temporal.

Projection distance of 16.3 m

WAD of 2.10 m

ACCIDENT DATA COLLECTION AND RECONSTRUCTION

> Exemple pedestrian case (2)

From IVAC database

- Victim information: 49-year-old female, 158cm and 58kg
- Vehicle information: BMW 318
- Impact speed: about 62.9 km/h

Injury details:

- Cerebral contusion (AIS3), Hematoma (AIS2), Fatal head injuries (AIS6)

- Right tibia (AIS3) and fibula (AIS3) fracture

ACCIDENT DATA COLLECTION AND RECONSTRUCTION

Reconstruction results

	Example 1		Example 2		
	Accident	Simulation	Accident	Simulation	
Throw distance (m)	12.4	11.3	18	17.5	
WAD (mm)	2000	2030	1980	1940	
Velocity (km/h)	60	54	60	62.9	

Windscreen FEM

Perpendicular to the windshield at 40 km/h [Lex van Rooij et al, 2001]

Windscreen Mechanical properties

Material	Parameters
Glass	E=74GPa; ρ=2500kg/m3; μ=0.227; EFG=0.001
PVB	E=2.6GPa; ρ =1100kg/m3; μ =0.435

0.01

Time (s)

0.02

0.03

ACCIDENT CASE

Case 2

Accident description

- Accident between a car and a motorcycle
- Doubt on helmet wearing
- Unconsciousness (Glasgow 7)
- AIS 3

MODEL BASED HEAD INJURY CRITERIA

HEAD TRAUMA SIMULATIONS

UNIVERSITÉ DE STRASBOURG

EXTRACTION OF CRITERIA

Skull fracture criteria

Evaluation of existing Head Injury Criteria

AXON STRAIN IN THE LITTERATURE

Proposed tolerance limit is in accordance with various studied reported in literature.

HEAD INJURY PREDICTION TOOL FOR END USERS

HEAD INJURY PREDICTION TOOL

• COUPLED EXPERIMENTAL VS NUMERICAL TEST METHODS

• FULL FE APPROACH

FROM RESEARCH TO END USERS

UNIVERSITÉ DE STRASBOURG

• **PRE-POST-PROCESSING USER INTERFACES :**

SUFEHM IRA TOOL

UNIVERSITÉ DE STRASBOURG

COMPUTATION OF SUFEHM CRITERIA

VIA WEB SIMULATION

STEP 1. IMPLEMENTATION OF LOADING CURVES

UNIVERSITÉ DE STRASBOURG

STEP 4. INJURY RISK ASSESSMENT

61

HEAD PROTECTIVE SYSTEMS EVALUATION & OPTIMISATION

HELMET CONSUMER TESTS: TOWARDS NEW HELMET STANDARDS

PASBOURG

HELMET CONSUMER TESTS IN FRANCE

Journal title:

60 Millions de consomateurs (F) August 2015

12 moto helmets evaluated based on SUFEHM criteria

			6		æ
expriment le poils de du que enière dans la colonien finale.	SHOE GIAGR	HJC TG-17	ARAI ANDES I	SCHUBERTH	CABERG
Prix indicat f	465€	100 €	360 2 430 0	400 & 450 C	180 à 200 €
Prix Solan sou	59 t	4일 원	50 C	72 C	\$1€
Matériau de la cóque	Fibre de verre	Fibre de venie	Fibres composites	Fiore de verre	Polycartonsia
Pokis mesuré, talle N	1,45 -4g	1,40 kg	1,55 kg	1,45 kg	1,65 kg
Poirts mesur & taille M	1,50 -03	,50 kg	1,65 8]	1,95 kg	1,60 kg
Nombre de caloites externes	3	2	1	2	-
Jugula ne	Crémailléra	Louble annes, x	Double shocaux	Diðmailtre	Crámai lere
(1978-3018)	<u>Qi</u>	Non	Bor	Cul	LO
Philouee Philock	Cui	Oui	hann	Gui	0.1
Ausorphion des choca (40 %)	000	000	000	00	00
Aptinudes routieres (36 %)	000	O O	00	000	00
Context	000	000	000	000	00
Maircien	000	000	00	000	0
Champide vision	00	000	000	00	000
Manipulation écran/pare-so el	000	0	•	000	000
Efficació de la ventration	00	000	000	000	00
Élanchéilé du casque	00	0	0	G	00
Isolation phonique (18 %)	00	0		00	0
Pressions accustiques à 90/130 km/h	30/38 cB(A)	93/100 dB(A)	88/102/d 94(89,09 dB(A)	92/100 dB(A)
Entretien (6 %)	000	000	0	000	00
Népose étran	000	000	00	000	000
Dopose pare-sola l	000	Sec. Sec.	-	000	00
Dépose gamilure intérieure	000	000	0	00	000
Uoe mentation	000	000	•	000	0
Note globale (100 %)*	17/20	16.5/20	15.5/20	13/20	13/20

Le critère de la sécurité avant tout

rences de cosques intégraux. Les qui protégerait mieux. prix annoncés correspondent à des

cixques de couleur noire, la meins chére avec Des poids et volumes lo bland. Los habileges sont susceptibles de très variables aire grinipen l'addition.

on ne paut pas en faite un critérie de choix. Les - donc so renord on magazin pour achater ibres de vere cuicompostes sont putór dans - son casque le haut du tableau. Meis cette constalation no 👒 Les poids annoncés sont parfois álognés 🐤 Le traitement lantibuéo mórito une vaut pas général & en matiere du récisione - du récultar de la paséa. On constate par si- attention particulière. De matiples trateau chen. Orte d'afépere de l'ensantre de l'ensantre qu'i peut y avoirfaciement 100 g d'écart ments eu systèmes existent, pormi lasquels le construction du casque, avec tous ses l'entre deux casques de même tatin, Vais n' la britile Finlock qui se distingue aujourd'hu. sons doute son importance, mais il n'est pas le goive la différence lorsou'il les essais

ous avois sékul unié douze réfé 👘 suffisent aujourd'hul pour cholair un casque 🚽 Le nombre de calottes externes con-

le laoricant pour proposer des tailles différentes. S'i ne dispose que d'une calotte externe, i va jouer sur le remplissage pour faire varier Il taut rappolor quo rion no remplace un la talle. Celaire sera pas neutra en termes de Lornatériau de la coque estimantionné, mais - essayage pour faire sun chuix. Meux yaut - yourne et de poids. Si en possible plismus, le cascue de petite talle pouns être mon-VOLUMINEUM.

respondiau nombre de moules utilisés par

composants. Le matériau de la poque a pratique, l'n'est pas sin que rutisateur pre- Octobantile en plastique suple s'applique à l'intériour de l'ecran et parvient à crainer los

60 MILLIONS DECONSORMATEURS/ 4PE07/ SUPIL/MERE2015

387

UNIVERSITÉ DE STRASBOURG

HELMET CONSUMER TESTS IN GERMANY

Journal title:

Stiftung Warentest August 2015

18 bicy. helmets evaluated based on SUFEHM criteria

Testsieger. Ante Sto3dämpfung. Dia Bolüf tung funktion ort akzeptabel. Guter Magnetverschluss. Nachts nicht gut sichtbar. Elliche Designvarianten.

Luftiger Helm. Kepiband kann am Hintarkepi. drincken, Søhr guter Verschluss, Bostnoten bein Anpassen, Aufsetzen und Absetzen. Senr gut im Dunkaln erkennbar.

Sportlich hultig. Helm mit großen Luttlächern und Rundum Insektenschutz, Gute Passform. Zu lange Kinnrichten, Nachts sehr gut sichthar

Sportlich leicht. Kein Natz zum Schulz vor Insekten, dalur gete Relüftung, Bester im Tast in Handhabung und Komfort, Nachts sehr gut sichtbar.

bend rutsont beim Festdrehen stwas nach

oben. If emerversteller schwergängig. Im

Dunkeln nicht güt erkennbar.

Bester Sportlicher. Cute Stulk lämpfung. Gut

belüftet. Velschig, Mäßige Abstroilsicherheit.

Gut in der Hanchabung, Riemen varstallen

sich racht leicht heim Transport.

KED

80 Euro

Specialized

66 Euro

Nutcese

80 Euro

Recht schwer. Gute Steßdämpfung.

Etliche Designvonanten.

Uvex City v

DECOIETNICES

Neuheit, Schwerer Ci-

120 Euro

Schränkt das Sichtlicht ein. Mäßige Belüftung

Guter Megnetverschluss. Nachts gut sichtbar.

tyliche mit Visier gegen Wind und Sonne

beeinträchtigt, Nachts sehr gut sichtbar.

Reicht tief in die Stirn, was die Sicht

Gut sichtbar, Citynelm mit guter Belüftung. Gute Passform, sin lach zu handhaben. Bei Nacht gut erkennber durch Licht auf der Rucksaite und Reflektoren.

Gewichtun	Melos Urban Active	KED Grem	Nutuase Street Gen3	Alpina E-Heim Deluxa	Specialized Centre	Uncon City N	Bell Mani ^a
Mithane Buie to Ifern'	70	80	80	115	65	120	70
CICCO - OLIALITÄTSURTEIL 100 -	6UT (2,4)	GUT (2.5)	GUT (2,6)	BEFRIEDI- GEND (2,8)	BEFRIEDI- GEND (2,6)	BEFRIEDI- GEND (2,6)	GEVO (2.7)
E04	Lafried (2.6)	balvied, 2,8/1	nut (2.5)	befried. (2.3)*1	befried. (2,3)**	befried. (2,8)	helrical (2.9)
UNFALLSCHUTZ 00	+(2)	+/0	+/0	0/0	O/C	0/6	0/9"
Stokcamptune / Envenen- subsporting	0/4	9/4	0/+	+/0	0/+	+/0	+/+
Abstralistrhome i /Be astbancon Riemen, autous	0/7	0	+	++	++	++	++
Ericemberkelt in Dunken	P. Lablad 12.9!	out (i)	befried 13.11	aut (1.6)	sshr nut (1,3)	befried. (2.0)	gut (1,8)
HANDHABUNU ROMFORT	C."	AT.	+	++	+	++	+
Uebrauchsenicitung	OULUL	4/4/44	C/+/++	++/++/++	++/++/++	+/+/++	++/++/+
Anpissen / All seban / Alselden	UTTTT	0	6	++	++	++	++
Verstellen das Garlsysheins beim Transport	++	J.L.(L.L	+/++	+/+	++/++	0/+	+/0
Tragekommit: Passio in / Kinniicmen nuc Verschus	1110	++/1	-105	++/+	++/+	-/@"	++/0
Sidule d / Beluftung	++/0	TTOT	and if al	mut 12 fit	aut 11 61	out 12 51	seler gat (',4)
HITZEBESTAK DIGKEIT 10	S gut (1.5)	Emned 12 5	guerrer di d'	generatit 0!	eahr nut 11 0!	salir out (1.0)	sehr put (1.5)
SCHADSTOFFE 10	S anter gut (1.)	reineu (2.5)	latin Ancti'n'	Janu Anelatot	Tanu Borler d	APACT STORAGE	COLUMN TWO IS NOT
AUSSTATTUNG / TECHNISCHE MERKMALE		Lange Fred 2	Lamahala /	Stim Shall	Mism Shell /	Hartsdraw / Hiss	Mine Shell /
Kenstraktion / Verschlusstep	Mirni Siel /	Breter	Macrel	Baster	Kirk	ter	Paster
such store 0.10 - otherstellbassion band!	3116-51	1152-58	3/52-64	2755 01	1/54 62	2755-61	2/50-61
Angeomeria Grugen / General Contract Change	241	312	4/3	327	239	490 (mit Visier)	323
Herbetmen / Licht/ Schirm /	עמעיע		1 /1/1/				
hisektenachum (Evegenkeups			uru				

80 Freizeit und Verkehr

test 8/2015

PEDESTRIAN AND PASSAGER

PROTECTION

VIRTUAL TESTING IN AUTOMOTIVE ENVIRONMENTUNIVERSITÉ DE STRASBOURG

Safe-EV project Pedestrian Passive Safety

RESULTS OF PEDESTRIAN SIMULATIONS

OVERVIEW OF ASSESSMENTS

 Assessment of head injury risk (using SUFEHM –IRA tool under VPS)

• Further possible injury risk indicators (based on max. pl. strain analysis)

EVALUATION AGAINST BIOMECHANICAL INJURIES

BICYCLE HELMET

LESS-THAN-LETHAL WEAPONS

BACK EFFECT : MILITARY HELMET

A LEGAL MEDICINE CASE

Head injury risks calculated with SUFEHM

CONCLUSION-HEAD

- Advanced brain FE models, Computation of axon strain
- Consolidated head trauma database with 125 cases.
- Very high Nagelkerke R² value (R²=0.876) for brain injury
- Best candidate parameter for brain injury is axon strain
- The model based head injury criteria are:
- Axon strain for brain AIS2+ ($\varepsilon_a = 15\%$)
- Skull strain energy for fracture (0.5 J)
- Head injury prediction tool for end users

NECK MODELLING AND

WHIPLASH INJURY CRITERIA

FE NECK MODEL : GEOMETRY

METHODS

Height : 1m72 Weight : 72 Kg Age : 33 Years (50th)

Criterion

Length min

Length max

Aspect ratio

Angle quad(°)

Angle Tria

Jacobien

% of tria

Warpage

Millim scan sectio	etric netric nors	BROURE	
Values 2.25 mm 3 mm [1-2] [0-5] [70-110] [50-80] [0.7-1] 6	4 Meshing criteria		3 Surface reconstruction

FEM OF THE HEAD-NECK SYSTEM

UNIVERSITÉ DE STRASBOURG

NECK FINITE ELEMENT MODEL (UNISTRA)

		Volunteers	UdS FEM	
Hexion mode		1.6 Hz	2 Hz	
Inclination mode		1.7 Hz	2.6 Hz	
Coupled mode	I	3.7 Hz	3 Hz	
S-Shape mode		8.8 Hz	11 Hz	
lateral retraction mode		9.5 Hz	9.6 Hz	

NECK FINITE ELEMENT MODEL (UNISTRA)

HEAD-NECK UNISTRA COUPLING

FOLKSAM DATABASE : 87 REAR IMPACTS ACCIDENTS

Delta V of pulses versus injury severity.

122 accident cases : 77 no neck injury 30 initial symtoms 15 symptoms over than 1 month

Average age of 46 year old

UNIVERSITÉ DE STRASBOURG

METHODOLOGY

HIC, HEAD Max Acceleration, NIC

 $\sum_{i=1}^{6} |C_i - C_{i+1}| dx \P$

	R ² Stade 1	R ² Stade 2	R ² Stade 3
NIC	0.017	0.073	0.109
Nkm	0.086	0.324	0.266
Fx upper	0.108	0.363	0.361
Fz upper	0.071	0.076	0.047
My upper	0.127	0.433	0.495
Abs (C1-C7)	0.223	0.545	0.842

NECK INJURY CRITERIA BASED ON FE NECK MODEL AND REAL WHIPLASH ACCIDENT RECONSTRUCTION

Meyer *et al.* 2012, 'Development and Validation of a Coupled Head-neck FEM – Application to Whiplash Injury Criteria Investigation', *International Journal of Crashworthiness*, 2012, 1–24

- Full validated neck model (time & frequency)
- Model based neck injury criteria (F,L,R,V)
- SUFEHM_onNeck coupled to THUMS-v3
- Transferred in automotive industry
- Injury Risk Assessment tool

CONCLUSION-NECK

Menschmodelle- Dynamore Stuttgart June 2016

Model based Head & Neck injury criteria

Deck C, Meyer F, Bourdet N, Willinger R.

Rémy WILLINGER remy.willinger@unistra.fr Strasbourg University Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (Icube) Equipe Matériaux multi-échelles et Biomécanique (MMB)

