

Dynamore Informationstag Juni 02, 2016

Das menschliche Verhalten bei seitlichen Fahrzeugmanövern – "Fare-Side" Crash, Spurwechsel und Seitenkollision

Christian Kleinbach, Lacie Feller, Jörg Fehr

Institute of Engineering and Computational Mechanics University of Stuttgart, Germany Profs. Eberhard / Hanss / Fehr

- simulation and analysis of dynamical systems
- simulation is essential in the development process of new products
- third discipline besides theory and experiment
- research
 - multibody dynamics
 - mechatronics and optimization
 - uncertainties
 - contact mechanics
 - bio mechanics
 - ✤ driving safety

Simulation of Dynamical System

Driving Safety Why?

standardized European crash test

- moving deformable barrier
 950 kg, 50 km/h
- 2001 Ford Taurus car model with a seatbelt, no airbag

 comparison between Dummy and HBM (THUMS) behavior

Driving Safety Future?

Pre-Crash

In-Crash

time duration	+	-
acceleration/forces	+	-
dummy behavior	-	+

- driver changes his position by muscle movement
- current status of safety modeling does not include these effects
- ? optimal human body model ?
 - ✤ FE vs. MBS
 - ✤ activated not activated
- optimal safety design based on optimal human body model 5

comparability needs to be ensured

• full car crash is very complex

- usually not available in MBS
- too many parameters
 - ✤ seating position
 - door intrusion
 - contact definitions
- 14 hours calculation time

Institute of Engineering and Computational Mechanics University of Stuttgart, Germany Profs. Eberhard / Hanss / Fehr

How? [FehrKleinbach15]

simple setup for comparison [FehrKleinbach15]

- active controlled deceleration
 - passenger:
 initial velocity v_{ini}
 initial energy J_{ini}

- t_{final} passenger at rest
- *J*_{ini} absorbed by safety system and passenger

- active approach
- online measurement of injury value
- e.g. injury value r_{Defl} below/ above desired value w → e controller C(s) increase/ decrease forces on thorax plate
- use control to find optimal energy distribution

University of Stuttgart, Germany Profs. Eberhard / Hanss / Fehr

Design of Optimal Safety Systems

User Defined Function

- most energy absorbed in pelvis
 - accordance to the human body
- large loads can be transmitted through the pelvis

Comparison FE / MBS / THUMS

- standard setup to compare different models
 - human body models
 - ✤ FE vs. MBS
 - * muscled vs. unmuscled

- current safety devices have nearly no effect
- injury criteria for THUMS
 - head: acceleration
 - neck: tension and shear
 - ✤ shoulder: clavicle force
 - ✤ chest: deflection and VC
 - abdomen: outer force on abdominal area
 - pelvis: outer force on pelvic area

Lateral Safety Scenarios Student Projects

	Grenzwert		THUMS		2 THUMS			
	Oben	Unten	Mit	Ohne Gurt	Mit	Ohne Gurt		
HIC15	700	500	5	3,1	41	3,5		
a3ms [g]	80	72	10	10	18,1	8		
Nackenscherkraft [kN]	1,1	-	0,22	0,11	0,14	0,22		
Nackenzugkraft [kN]	1,1	-	-0,09	0,1	-0,063	-0,14		
Schlüsselbeinkraft [kN]	$1,\!48$	-	0,44	-0,64	-0,33	-0,054		
Rippenein- drückung [mm]	50	28	14	22	19,1	21		
VC-Kriterium $\left[\frac{\mathbf{m}}{\mathbf{s}}\right]$	1	-	$0,\!13$	$0,\!17$	0,27	0,20		
Abdomenkraft [kN]	3	-	0,9	0,69	0,93	$10^{-0,62}$		
Hüftkraft [kN]	2,8	1,7	$1,\!4$	0,8	1,11	0,58		

Comparison with Dummy

kinematic comparison ES2re vs. THUMS •

forces are rather low

University of Stuttgart, Germany Profs. Eberhard / Hanss / Fehr

100

200

Y-coordinate [mm]

1000

-100

0

THUMS

300

400

Far-Side crash [Mack16]

single lane change [Rangarajan16]

- simplified model
- seat + belt + HBM (THUMS)
- BOUNDARY_PRESCRIBED _MOTION_RIGID seat rails
- imaginary springs to prevent hands falling down

Lateral Safety Scenarios Student Projects

THUMS (Toyota)

THUMS Rib

D-ring

retractor

Mode

slip ring

Single Lane Change Video

Kinematic Comparison

Institute of Engineering and Computational Mechanics University of Stuttgart, Germany Profs. Eberhard / Hanss / Fehr

lateral safety scenarios student projects

Far-Side crash [Mack16]

Iane change [Rangarajan16]

- pre-activation of safety devices
 larger time horizon
 - lower forces

and Computational Mechanics University of Stuttgart, Germany Profs. Eberhard / Hanss / Fehr

Inclusion of Muscle Activity

GHBMC model

- 54 neck muscles are modeled as 1D MAT156 elements
- effects of mu length and co raction veloc included

- physiological activation dynamics are not present in any commercial model
- collaboration Syn Schmitts group

muscle reflex activation

WHEN sense changes in length

implementation via uctrl- subrotine

observe changes in head motion

Institute of Engineering and Computational Mechanics University of Stuttgart, Germany Profs. Eberhard / Hanss / Fehr • compute muscle activation after strain threshold & initial time delay have been surpassed $\frac{da}{dt} = \frac{u-a}{\tau(a,u)}$ $\tau(a,u) = \begin{cases} t_{act}(0.5+1.5a) & u > a\\ \frac{t_{deact}}{0.5+1.5a} & u \le a \end{cases}$

component level validation

 concentric contraction of a piglet muscle

 experimental results from [GüntherSchmittWank07]

Inclusion of Muscles

- 100 gram lift off
- activation based on strain rate

human body models

- side impact scenarios
- optimal human body model
- generic side impact setup with active controlled plates
 - compare different models based on energy consumption
 - valid approach to compare models in different software
- muscle inclusion necessary for active safety questions
- GHBMC model
 - neck to stiff for low impact applications
 - muscle activation based on strain rate

Institute of Engineering and Computational Mechanics University of Stuttgart, Germany Profs. Eberhard / Hanss / Fehr

Summary

challenges and current topics

- further investigations with standard setup
 - muscle vs. unmuscled
- SimTech muscle model
- combine advantage of
 FE and MBS via
 model order reduction → EMBS

Compare different human models for crash analysis

Efficient Crash Simulations

hierarchical approach

THUMS by Toyota

- detailed FE-Model of the human body
- good biofidelity
 - compared Thums with ES2 in side impact scenarios
 - identify body parts prone to severe injury → ribcage

Human Model by TNO (Madymo)

- run-time efficient MBS-Model
- increase biofidelity by integrating reduced elastic bodies
- enhance applicability also for Active Safety Systems

and Compute pre crash with EMBS

University of Stuttgart, Germany Profs. Eberhard / Hanss / Fehr

Model Order Reduction in EMBS

floating frame of reference approach: linear elastic deformations ODE with elastic degrees of freedom q is approximated via projection $q \approx \nabla \cdot \overline{q}$

 $\underbrace{\begin{array}{c} V^{T} \cdot \mathbf{M} \cdot \mathbf{V} \\ \overline{\mathbf{M}} \end{array}}_{\overline{\mathbf{M}}} \cdot \underbrace{\ddot{q}}(t) + \underbrace{V^{T} \cdot \mathbf{D}}_{\overline{\mathbf{D}}} \cdot \underbrace{\ddot{q}}(t) + \underbrace{\dot{q}}(t) \\ \overline{\mathbf{K}} \end{array} \\ \underbrace{\dot{\mathbf{K}}}_{\overline{\mathbf{K}}} \cdot \underbrace{\vec{q}}(t) = \underbrace{\mathbf{B}}_{\overline{\mathbf{K}}} \cdot \underbrace{\mathbf{W}}_{\overline{\mathbf{K}}} \cdot \underbrace{\mathbf{W}}_{\overline{\mathbf{K}}}$

MOR Workflow

human body models

- side impact scenarios
- optimal human body model
- generic side impact setup with active controlled plates
 - compare different models based on energy consumption
 - valid approach to compare models in different software
- muscle inclusion necessary for active safety questions
- GHBMC model
 - neck to stiff for low impact applications
 - muscle activation based on strain rate

Institute of Engineering and Computational Mechanics University of Stuttgart, Germany Profs. Eberhard / Hanss / Fehr

Summary

challenges and current topics

- further investigations with standard setup
 - muscle vs. unmuscled
- SimTech muscle model
- combine advantage of FE and MBS via model order reduction → EMBS

lessons learned

- MBS and FEM both suited for safety development depending on research question
- combination of different disciplines

thank you for your attention

- [FehrKleinbach15] Fehr, J.; Kleinbach, C.: A Comparison between Finite Element Models and MBS Models in Automotive Safety Applications. In Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics, Barcelona, Spain, 2015.
- [Mack16] Mack, F.: Simulation des menschlichen Verhaltens bei einem Far-Side Unfall
- . Bachelorarbeit BSC-062, Institut für Technische und Numerische Mechanik, Universität Stuttgart, 2016.
- [Rangarajan16] Rangarajan, A.: Human Body Behaviour in a Single Lane Change Maneuver. Studienarbeit STUD-439, Institut für Technische und Numerische Mechanik, Universität Stuttgart, 2016.
- [GüntherSchmittWank07] Günther, M.; Schmitt, S.; Wank, V.: High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models. Biological Cybernetics, Vol. 97, No. 1, pp. 63–79, 2007.
- [FellerEtAl16] Feller L., Kleinbach C., Fehr J., Schmitt S.: Incorporating Muscle Activation Dynamics into the Global Human Body Model, submitted to IRCOBI conference 2016.

Institute of Engineering and Computational Mechanics University of Stuttgart, Germany Profs. Eberhard / Hanss / Fehr