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Abstract

The purpose of this paper is to explore some interesting aspects of stochastic opti-
mization and to propose a two-stage optimization process for highly nonlinear automotive
crash problems.

In the first stage of this process, a preliminary stochastic optimization is conducted
with a large number of design variables. The stochastic optimization serves the dual
purpose of obtaining a (nearly) optimal solution, which need not be close to the initial
design, and of identifying a small set of design variables relevant to the optimization
problem.

In the second stage, a deterministic optimization using only the set of relevant design
variables is conducted. The result of the preceding stochastic optimization is used as the
starting point for the deterministic optimization.

This procedure is demonstrated with a van-component model (previously introduced
in [1]) used for crash calculations. LS-OPT [4] is used due to its ability to perform both
stochastic (Latin Hypercube) and deterministic optimization.

1 Stage I: Stochastic Optimization

Stochastic optimization is often performed using the Monte Carlo method, where each design
variable is individually constrained to lie within a user-specified upper and lower bound. The
input values for these design variables are then determined randomly within their respective
bounds.

The Latin Hypercube method provided by LS-OPT is also a random experimental design
process. Figure 1 illustrates the algorithm used for generating random values for a small
set of design variables (in this case, t1 through t4). The range of each design variable is
subdivided into n equal intervals, where n is the number of experiments (in this case, the
number of experiments is 5). A set of input variables is then determined for each experiment
by randomly selecting one of the n sub-divisions for each variable. Each sub-division may be
used within only one single experiment, thus ensuring that the entire design space is covered.

The distribution of design points for the Monte Carlo and Latin Hypercube algorithms
can be influenced by adding additional constraints based on response functions. This requires
a response function that depends linearly on the design variables. The responses of a new
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Figure 1: Latin Hypercube algorithm of LS-OPT

design can then be estimated by using the initial values of the design variables together with
the corresponding initial responses.

For the optimization of a vehicle body, the mass of sheet metal parts linearly depends on
sheet thickness, provided that the geometry remains unchanged. If the sheet thickness is a
design variable, the mass for a new value of the sheet thickness can be estimated by multiplying
the new sheet thickness by the ratio of initial sheet thickness to initial mass. Hence the total
mass of all parts involved in an optimization can be estimated directly after the input values
for an experiment are generated and can thus be used as a variable to define a constraint.

There are several different ways for enforcing the upper and lower bounds for a constraint
variable:

1. In LS-OPT, a large number of initial design points is created. All points within this
initial set exceeding the constraint are then shifted until they lie on the bound that
has been exceeded. This is achieved, for example, by varying the sheet thicknessess
appropriately. Depending on the number of points created for the initial set, a large
number of design points may lie on the bounds of the constraint. Thus, in the second
stage, the final set of design points is extracted from the initial set by the help of the
D-optimality criterion [4].

The D-optimality criterion can be used with either a linear or quadratic approximation.
The particular choice depends upon the equation applied to estimate the constraint
variable from the design variables. If, for example, mass is defined as a constraint variable
and the sheet thickness of each sheet metal part are the design variables, then linear
approximation has to be used, since mass is linearly dependent from sheet thickness.

2. For the construction of a Monte Carlo design, experiments outside of the constraint are
filtered out when the set of design points is created. The generation of random values for
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a single experiment is repeated until a design is found for which the constraint variable
meets the bounds.
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Figure 2: Distribution of design points for Latin Hypercube and the Monte Carlo algorithm

In the diagram of figure 2 the objective variable is plotted vs. the constraint variable for
sets of design points generated by LS-OPT (Latin Hypercube) and the Monte Carlo algorithm.
The design points produced by LS-OPT (x) often lie on the borders of the constraint, which
results in an irregular distribution of the set of design points. Obviously the D-optimality
criterion applied to extract the final set of design points from such an initial set does not
strongly improve the distribution of the design points.

In contrast to Latin Hypercube, the set of design points created by the Monte Carlo
algorithm shows the typical distribution of a random experimental design, where no design
point is lying on a bound and the number of design points is decreasing towards the bounds
according to a Gaussian distribution. Thus the number of design points suitable for analysis
is large in comparison to Latin Hypercube.

Figure 3 illustrates the advantage of performing a constrained Monte Carlo design. With-
out any constraint, a simulation would be carried out for all the design points plotted on the
diagram. By defining a constraint, the experiments that are unintersting or irrelevant are
effectively filtered out. Thus the number of simulations required can be reduced.

2 Stage II: Identifying Important Variables for Deter-

ministic Optimization. Regression Analysis

2.1 General Concepts

In statistical literature, there are many different representations of the concepts involved in
finding the underlying dependencies between input and output variables based on a number
of experiments, e.g. [3]. Let us show one possible derivation:
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Figure 3: Definition of constraints for stochastic optimization

Let there be p experiments (simulations), each of which is characterized by an n×1 vector
x̂i of input variables and one output variable ŷi. In crash simulations, x̂i could be a vector
of sheet thicknesses and other parameters, and ŷi could be a measure of the crashworthiness
of the resulting structure. There are several commercial software tools available that can
generate p sets of input variables, and run p simulations to obtain output variables yi. We
used LS-OPT [4] as well as our own Perl [5] programs to generate the examples shown in
Section 4.

Let us define a n× p matrix of all input values,

X̂ =
[

x̂1 x̂2 . . . x̂p
]
, (1)

and a corresponding 1× p vector of output values,

ŷT =
[
ŷ1 ŷ2 . . . x̂p

]
. (2)

It is customary to center the values for x̂i and ŷi with their mean values over all experiments:

X̄ = X̂− 1

p

∑
i=1,p

x̂i = X̂− 1

p
X̂1p×p, (3)

where 1p×p is a p× p matrix of ones. Analogously,

ȳT = ŷT − 1

p
ŷT1p×p. (4)

Let us now define covariance matrices1 for X̄ and ȳT :

S2
x = X̄X̄T (5)

S2
y = ȳT ȳ. (6)

1in statistical literature, covariance matrices usually contain a factor 1
p . However, this is not necessary for

our purposes.
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It is easily established that S2
x is positive semidefinite. In order to obtain the standard devia-

tion2 Sx with
S2
x = SxSx, (7)

we can perform an eigenvalue decomposition3 of S2
x and take the square roots of the eigenvalues,

viz.

S2
x = TTdiag {λi}T (8)

Sx = TTdiag
{√

λi

}
T (9)

λi ≥ 0 due to positive semidefiniteness. (10)

Of course,

Sy =
√
S2
y (11)

is computed trivially.
Let us now introduce the transformed variables

X = S−1
x X̄ (12)

yT = S−1
y ȳT , (13)

assuming Sx is invertible and Sy 6= 0. These variables are normalized in the sense that

XXT = S−1
x X̄X̄TS−1

x = S−1
x S2

xS
−1
x = I (14)

yTy = S−1
y ȳT ȳS−1

y = S−1
y S2

yS
−1
y = 1. (15)

Our goal is to find a linear approximation with a n× 1 vector w such that the residual

r = y −XTw (16)

is minimized. Minimizing the quadratic norm of r is equivalent to minimizing rT r, hence the
name Least Squares Approximation.

With the orthogonality conditions 14 and 15, we obtain

rT r =
(
yT −wTX

) (
y −XTw

)
(17)

= yTy − yTXTw −wTXy + wTXXTw (18)

= 1− 2wTXy + wTw (19)

In index notation, this becomes

riri = 1− 2wiXijyj + wiwi, (20)

where summation over double indices is implied.
The minimum of equation 20 can be found by taking the derivative with respect to w and

setting it to zero. In index notation:

∂ (riri)

∂wk
= −2δikXijyj + δikwi + wiδik (21)

= −2Xkjyj + 2wk = 2 (wk −Xkjyj) . (22)

2Give or take a factor 1√
p .

3This process is significantly simplified if the input variables x are completely independent of each other.
In such a case, the covariance matrix becomes diagonal: S2

x = diag {λi} and T = I, hence Sx = diag
{√

λi
}
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The Kronecker delta δij is defined as

δij =

{
1 if i = j
0 otherwise.

(23)

Back in matrix notation, we find that

w = Xy. (24)

Our linear approximation becomes

y = wTx = yTXTx. (25)

This gives rise to interpreting the elements of w as the significance of each normalized
input variable in the vector

x = S−1
x x̄ (26)

for the result of the simulation. Generally, the elements of x are a linear combination of the
elements of x̄.

In terms of centered variables 3 and 4 we obtain

ȳ = ȳT X̄T
(
X̄X̄T

)−1

︸ ︷︷ ︸
w̄

x̄. (27)

The weight vector w̄ contains the non-normalized regression coefficients. Hence, its values
cannot be compared to each other directly.

2.2 Variable Screening in LS-OPT (ANOVA)

LS-OPT provides the capability of performing a significance test for each variable in order to
remove those coefficients or variables which have a small contribution to the design model [4].
For each response, the variance of each variable with respect to that response is tracked and
tested for significance using the partial F-test [2]. The importance of a variable is penalized
by both a small absolute coefficient value (weight) computed from the regression, as well as by
a large uncertainty in the value of the coefficient pertaining to the variable. A 90% confidence
level is used to quantify the uncertainty and the variables are ranked based on this level.
The 100(1−α)% confidence interval for the regression coefficients bj, j = 1, ..., n is determined
by

bj −
∆bj

2
≤ βj ≤ bj +

∆bj
2

(28)

where

∆bj = 2 tα/2,p−(n+1)

√
σ̂2Cjj (29)

and σ̂2 is an unbiased estimator of the variance σ2 given by

σ̂2 =
ε2

p− (n+ 1)
=

Σp
i=1(yi − ŷi)2

p− (n+ 1)
(30)

Cjj is the diagonal element of (X̂T X̂)−1 corresponding to bj and tα/2,p−(n+1) is the t or
Student’s Distribution. ε is the error between the response yi and the estimated response ŷi
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evaluated by linear regression. 100(1 − α)% therefore represents the level of confidence that
bj will lie within the computed interval, (4).

Figure 5 demonstrates graphically the criterion for the ranking of the variables. A 90%
confidence level defines the lower bound and the variables are ranked according to this lower
bound. If the lower bound is less than zero, the variable is declared as insignificant.
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Figure 5: Criterion for the significance of a variable

Each variable is normalized with respect to the size of the design space. Thus all variables
range within the interval [0,1] and a reasonable comparison can be made for variables of
different kinds.

3 Description of Van Component Model for Crash

The scope of the optimization is an assembly of a vehicle body for a commercial van as shown
in Figure 6.

The main components of that assembly are the first cross member and the front part of the
longitudinal member of the frame. Furthermore, the absorbing box between first cross member
and longitudinal member, parts of the wheelhouse and the closing panels of the longitudinal
member are also included in the assembly.

In Figure 7, boundary conditions and part numbers of important components are illus-
trated.

The assembly is connected to the bottom sheet of the vehicle body at the flanges of the
front and back closing panels. In the simulations, the assembly is fixed in y- and z-directions
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Figure 6: Position of the assembly within the vehicle

at these flanges. The assembly is displaced in x-direction at a constant velocity and deforms
at the stonewall.

For simulation purposes, only half of the frame is represented (since geometry and loads
are symmetric to the yz-plane) and the first cross member is cut off at the yz-plane. Therefore,
the translation in the y-direction and the rotation about the x- and z-axis have to be fixed
along the cutting edge.

4 Application of Concepts to the Example Model

A two-stage optimization has been performed for the component model described above. In
the first stage, two different kinds of random distributions are applied in order to generate
samples of design variables. The two methods are a Monte Carlo distribution provided by a
perl programm and a Latin Hypercube design combined with D-Optimal strategy provided by
LS-OPT. The two approaches are compared to each other.

In the second stage, a deterministic optimization using the successive response surface
methodology of LS-OPT is performed. The start design for this is the best set of variables
resulting out of the first stage.

4.1 Description of the optimization problem

The design variables consists of the sheet thicknesses of 15 parts and an additional bead located
on the longitiudinal member on the outer and inner side. The geometry and the location of
the bead is identical on both sides (symmetry). The bead is defined by 5 design variables,
the depth t, the x-location xmin, xmax and the z-location zmin, zmax. Preprocessing of the
LS-DYNA input file for the bead is done by a Perl programm (for additional information, see
[1]). In total there are 20 design variables.

The objective of the optimization is to maximize the ratio of the maximum value of the
internal energy Emax and the mass M of the considered components:
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Figure 7: Boundary Conditions

EM =
Emax

1000M
−→ maxEM . (31)

Two constraints are required to be fulfilled:

• Bounds for the Mass: 0.895 > M > 1.022

• Upper bound for the stonewall force: maxRWFORC = 1.25

For the evaluation of the maximum rigid wall force, maxRWFORC, the history curve
(ASCII-file RWFORC) is filtered using SAE 180.

4.2 Stage I: Monte Carlo and Latin Hypercube Distributions

4.2.1 Monte Carlo Distribution

In the first attempt, 60 simulations with 60 different sets of input variables are performed.
Variable sets are generated by a Perl programm using a modul for generating random values.
The total mass of the component model is checked directly and sets that are outside the
specified bounds are rejected. This is done until 60 feasible variable sets are available.

The three runs with the maximum ratio EM and with a stonewall force less than 1.5 are
choosen to be the starting values for 15 additional runs each. Thus, three sets of 15 variables
vary their values with these starting values as centerpoints. This is repeated for the three best
points of the previous 45 runs with 3× 15 = 45 more runs.

Thus, in total 1× 60 + 3× 45 + 3× 45 = 150 runs are put into execution.

4.2.2 Latin Hypercube Distribution

The Latin Hypercube design is provided by LS-OPT. LS-OPT generates an initial 1000 Latin
Hypercube points (sets of variables, see Section 1). Points that violate the mass constraint are
moved automatically into the feasible mass region. Out of these 1000 feasible points, a sub-set
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Figure 8: Simulation model - initial and deformed configuration

of 60 points is selected by applying the D-Optimal criterion (see [4]). Points chosen by the
D-Optimal criterion generally display good capabilities with respect to linear regression.

In the same manner, 30 more points are generated using as the centre point the best run
out of the first 60 runs.

Thus, in total 1× 60 + 1× 30 = 90 runs are put into execution.

4.3 Stage II: Deterministic Optimization using LS-OPT

In order to reduce the amount of variables for the deterministic optimization in Stage II, an
ANOVA analysis (Section 2.2) is performed. Therefore, the first 60 runs of the Latin Hypercube
Distribution are used. Figure 9 shows the results of the variable screening. LS-OPT ranks
the variables by using the bound of the 90% confidence interval that is closest to zero as the
ranking number.

The four most significant variables t1134, t1139, t1210 and t1221 are chosen for the deter-
ministic optimization using the response surface method in LS-OPT. For the starting variables
the values are taken out of the best run of the 150 Monte Carlo simulations. The values of
the remaining 16 variables are also taken out of the optimal Monte Carlo run and are kept
constant. It is slightly surprising, that in the third iteration no improvement of EM is ob-
served (Figure 10). Thus, the starting value for the deterministic optimization comes from
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Approximating Response ’E_M’ using 60 points
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Linear Function Approximation:
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Mean response value           =     0.8890
RMS error                     =     0.2238 (12.33%)
Maximum Residual              =     0.4611 (25.40%)
Average Error                 =     0.1824 (10.05%)
Square Root PRESS Residual    =     0.3687 (20.31%)
Variance                      =     0.0751
R^2                           =     0.8524
R^2 (adjusted)                =     0.8524
R^2 (prediction)              =     0.5995

Individual regression coefficients: confidence intervals
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

      |  Coeff.  | Confidence Int.(90%)| Confidence Int.(95%) |% Confidence
 Coeff|          |−−−−−−−−−−−−−−−−−−−−−|−−−−−−−−−−−−−−−−−−−−−−| not        
      |  Value   |  Lower   |   Upper  |  Lower   |   Upper   | zero       
 −−−−−|−−−−−−−−−−|−−−−−−−−−−|−−−−−−−−−−|−−−−−−−−−−|−−−−−−−−−−−|−−−−−−
 t1134|      1.58|     1.255|     1.906|      1.19|      1.971|   100
 t1139|     1.015|    0.7089|     1.321|    0.6476|      1.382|   100
 t1140|   −0.6216|   −0.9263|   −0.3169|   −0.9874|    −0.2559|   100
 t1144|   −0.2674|   −0.6063|   0.07145|   −0.6743|     0.1394|    80
 t1210|    −1.055|    −1.416|   −0.6931|    −1.489|    −0.6206|   100
 t1211|   −0.4619|   −0.8002|   −0.1236|    −0.868|   −0.05573|    97
 t1220|   −0.5574|   −0.8209|    −0.294|   −0.8737|    −0.2411|   100
 t1221|   −0.9985|    −1.337|   −0.6604|    −1.404|    −0.5926|   100
 t1222|    0.3766|   0.01415|     0.739|  −0.05852|     0.8117|    91
 t1223|   −0.2613|   −0.6392|    0.1165|   −0.7149|     0.1923|    74
 t1224|   −0.1445|   −0.4433|    0.1543|   −0.5032|     0.2142|    57
 t1410|   −0.0268|   −0.3932|    0.3396|   −0.4666|      0.413|    10
 t1411|  −0.05109|   −0.3883|    0.2861|   −0.4559|     0.3537|    20
 t1412|    −0.544|   −0.8206|   −0.2674|    −0.876|     −0.212|   100
 t1413|   −0.3308|   −0.7064|   0.04484|   −0.7818|     0.1202|    85
 xmin |    0.3381|  −0.06837|    0.7446|   −0.1499|     0.8261|    83
 xmax |   −0.3318|   −0.5868|  −0.07684|    −0.638|   −0.02572|    96
 zmin |    0.2477|  −0.02525|    0.5206|  −0.07996|     0.5753|    86
 zmax |   −0.1905|   −0.5596|    0.1786|   −0.6336|     0.2526|    60
 t    |    0.1564|   −0.1283|    0.4412|   −0.1854|     0.4983|    63
 −−−−−|−−−−−−−−−−|−−−−−−−−−−|−−−−−−−−−−|−−−−−−−−−−|−−−−−−−−−−−|−−−−−−

Ranking of terms based on bound of confidence interval
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

                Coeff|Absolute Value (90%)|10−Scale
                −−−−−|−−−−−−−−−−−−−−−−−−−−|−−−−−−−−
                t1134|             1.255  |   10.0
                t1139|            0.7089  |    5.6
                t1210|            0.6931  |    5.5
                t1221|            0.6604  |    5.3
                t1140|            0.3169  |    2.5
                t1220|             0.294  |    2.3
                t1412|            0.2674  |    2.1
                t1211|            0.1236  |    1.0
                xmax |           0.07684  |    0.6
                t1222|           0.01415  |    0.1
                zmin |      Insignificant |    0.0
                t1413|      Insignificant |    0.0
                xmin |      Insignificant |    0.0
                t1144|      Insignificant |    0.0
                t1223|      Insignificant |    0.0
                t    |      Insignificant |    0.0
                t1224|      Insignificant |    0.0
                zmax |      Insignificant |    0.0
                t1411|      Insignificant |    0.0
                t1410|      Insignificant |    0.0
                −−−−−|−−−−−−−−−−−−−−−−−−−−|−−−−−−−−

Variables kept constant in Stage II

Selected Variables for Stage II

Figure 9: Output of LS-OPT for variable screening with respect to the response EM

the sample distribution of the second iteration. Within the Latin Hypercube samples, the best
result with respect to the maximum Energy-Mass ratio EM is significantly worse than the
best result for the Monte Carlo samples (compare Figure 10). This is probably due to the
movement of the variables in order to fulfill the mass constraints. This leads to a degenerated
sample distribution with an accumulation of samples at the lower and upper bound of the
mass constraints (Figure 2).
Figure 10 shows the results of the Monte Carlo and the Latin Hypercube simulations of Stage
I and the result of an optimum run found by LS-OPT using the response surface methodology
in Stage II. A significant additional improvement of the response EM by the deterministic
approach is observed.
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5 Conclusions

The present paper shows the proceeding of a two-stage optimization, where in the first stage
a stochastic approach is considered and in the second stage, starting from the best result of
the first stage, a deterministic optimization using the Response Surface Method in LS-OPT
is performed.
The variation of the design variables (sheet thicknesses) is restricted by a mass constraint.
This is done in order to achieve only samples whose mass lies within a desired range. This
ensures that needless simulations are avoided.
On the basis of a set of Latin Hypercube simulations, a variable screening using the ANOVA
(ANalysis Of VAriance) feature in LS-OPT is performed. With this tool, those variables
detected as insignificant are removed for the second stage of the optimization process.

The starting variables for the deterministic optimization in the second stage are taken
out of the best run of the Monte Carlo simulations. A significant additional improvement of
the Energy/Mass ratio by the deterministic approach is observed. In total, an improvement
of 32.78 % from the initial configuration (1.205) to the optimum result of LS-OPT (1.60) is
achieved (Figure 10).
The combination of stochastic and deterministic optimization has shown to be a reasonable
method for obtaining sensible input values for a deterministic optimization. Furthermore, it
can be expected that in many cases, the convergence of the deterministic algorithm to local
extremal values with respect to the objective may be avoided.
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Figure 10: Response EM vs. the corresponding rigid wall force RWFORC for Latin Hypercube
and Monte Carlo Samples and for the final optimum found by the Response Surface Method
(RSM) in Stage II
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