Recent Developments and Roadmap

12th International LS-DYNA User's Conference June 5, 2012

Outline

- Introduction
- Recent developments

LS-PrePost	Mr. Philip Ho
Dummies	Dr. Christoph Maurath
Incompressible CFD	Dr. Facundo Del Pin
Electromagnetics	Dr. Pierre L'Eplattenier
ALE, DEM, SPH, Particle	Dr. Jason Wang

• Conclusions

LSTC Products

LS-TaSC V2

Was LS-OPT/Topology for V1; renamed as LS-TaSC, Topology and Shape Computation, since V2.

For the topology optimization of nonlinear problems involving dynamic loads and contact conditions.

Can be used to find a concept design for most structures analyzed using LS-DYNA.

LS-DYNA Application Areas

Development costs are spread across many industries

Automotive

Crash and safety NVH Durability

×

Aerospace Bird strike Containment Crash

Manufacturing

Stamping Forging

Consumer Products

Structural

Earthquake safety Concrete structures Homeland security

Electronics

Drop analysis Package analysis Thermal

Defense

Weapons design Blast response Penetration Underwater Shock Analysis

LS-DYNA One Code Strategy

"Combine the multi-physics capabilities into one scalable code for solving highly nonlinear transient problems to enable the solution of coupled multi-physics and multi-stage problems"

Explicit/Implicit

Heat Transfer

ALE & Mesh Free i.e., EFG, SPH, Airbag Particle

User Interface Elements, Materials, Loads

Acoustics, Frequency Response, Modal Methods

Discrete Element Method

After more than a decade the next major release includes:

Incompressible Fluids

CESE Compressible Fluid Solver

Electromagnetics

Accommodates Coupled Simulations

Multiple field equations are strongly coupled

One Code Strategy

Many Results Manufacturing, Durability, NVH, Crash

One Code Strategy

Specialized codes for each problem

Multi-physics problems are difficult to solve. Analysts must be trained in each specialized code Limits career paths to specific applications. Licensing costs are too high.

With one code.

Multi-physics problems are easily solved

Analysts can work on many types of related problems that are currently solved on multiple codes.

Flexibility in assignments

Flexibility in career paths

Analysts work in parallel to reduce the time to produce the initial model. In crash, one model for frontal, side, offset, and rear impacts. Durability, NVH, and crash models are identical with possible adjustments related to mesh density

Only one model to revise for design changes.

Only one model to check for errors.

All models use the same connectors in assembly

Multi-physics problems can be addressed as needed

Easier database management

Initial stress, strain, and thickness distributions from manufacturing simulations are available in all performance simulations

Multi-Physics

- Multi-physics problems require solution methods from more than one discipline.
- Examples

Fluid-Structure Interaction Tire Hydroplaning, Airbags Bird Strike on Engine Initial stresses, Impact + linear Response

Design Optimization Optimization + Mechanics Thermo-Mechanical Hot Forging and stamping

Multi-Stage

- Multi-stage problems require sequential simulations
- Examples

Stamping Binderwrap Implicit Dynamics Stamping Explicit Springback Implicit Static

Static Initialization Dynamic Simulations

Gravity loading prior to crash, durability and NVH Spinning jet engine fan blades prior to impact or blade-off

Manufacturing Results into Performance Simulation

Stamping introduces texturing and thinning Crash simulation accounts the effects of manufacturing

Crash simulation followed by Implicit Springback

Requires one code with Implicit and Explicit solution

One Code Strategy: multi-formulations

- No single solution method is suitable for all applications.
- Solid mechanics

Non-linear Formulations	Linear Elements for Eigenvalues, Superelements, and Linear Analysis
Reduced and fully integrated SPH, DEM Element Free Galerkin Isogeometric	Higher Order Elements including Isogeometric
Large Deformation	Small Deformation
Degree of Deformation	

One Code Strategy: multi-formulations

• Solid mechanics

Dynamics

Explicit methods for short duration transient problems.

Implicit methods for static and long duration problems.

Instantaneously switch between methods implicit to explicit and vice versa.

Fluid mechanics formulations

Incompressible flow.

Compressible flow.

Acoustics

Airbag particle methods for bag deployment

One Code Strategy: multi-processing

- Massively Parallel Processing (MPP) is here to stay.
 - MPP is moving downscale: Desktop MPP under Windows or Linux environments
 - Heterogeneous processing.
 - Processing across high speed networks.
 - Large MPP machines have many parallel jobs running simultaneously on subsets of processors.
 - 32-256 are preferred for LS-DYNA
 - Stamping analysis with adaptivity is ideally suited to MPP machines due to the simplicity of contact.
- Hybrid LS-DYNA combines SMP and MPI to improve scalability to more than 10K cores

Adaptive

- To handle manufacturing simulations adaptive remeshing is necessary
 - Used in sheet metal stamping and forging today
- Advantages:
 - Reduces run time
 - While increasing accuracy
 - Initial meshing is simplified
- Types of adaptivity:
 - r-method, relocate nodes
 - Number of nodes are not constant , EFG forging
 - h-method, adapt element size h
 - LS-DYNA shell and solids in future releases

 Node locked SMP Window license for single user O/S
to allow usage of 16 processor cores from AMD and
INTEL

- **40% price reduction** compared to 16 cores with network license
 - 16 one core simultaneous jobs,
 - 8 two core simultaneous jobs,
 - 4 four core simultaneous jobs,
 - etc.
- Extension of security software to single user Window's O/S to license MPP version is underway to take advantage of better scaling
 - The SMP version does not scale well after 6 to 8 cores.
- For additional information contact sales@lstc.com

Development Speakers

LS-PrePost	Mr. Philip Ho
Dummies	Dr. Christoph Maurath
Incompressible CFD	Dr. Facundo Del Pin
Electromagnetics	Dr. Pierre L'Eplattenier
ALE, DEM, SPH, Particle	Dr. Jason Wang

LS-PrePost Philip Ho

Outline of Talk

- Current status of LS-PrePost and the different releases
- New GUI of LS-Prepost 3.x/4.0
- New graphics rendering in 4.0
- Other New Features in LS-PrePost 3.2/4.0
- Current and future developments
- Summary and Conclusion

Current Status

- 3.2 is the current release of LS-PrePost
- Still support the old interface (version 2.4) users can toggle between old interface and new interface by F11 function key
- Tools to help users to transition from old to new interface
- Support Linux 64-bit systems, Windows 32bit and 64bits, Apple Mac OSX
- Continue to improve in stability, robustness and features
- **Download:** http://ftp.lstc.com/anonymous/outgoing/lsprepost/3.2

Development Version 4.0 beta

- New rendering technique to render the finite element model results many times faster than the older versions of LS-PrePost
- Latest features and updates will be implemented in this version
- Requires graphics cards that support openGL version 3.3 and higher
- Enter CNTL-L twice before loading data to disable new fast rendering
- **Download:** http://ftp.lstc.com/anonymous/outgoing/lsprepost/4.0

Old Interface

New Interface

LS-PrePost 3.2/4.0 GUI

95

Renum

60

ø

ø

ঞা

ΪĒ.

25

New Graphics Rendering in version 4.0

- Taken from a visualization research project at UCSD that was funded by Honda R&D North America (Mr. Ed Helwig)
- Part based data structure more efficient data organization
- VBO Vertex Buffer Objects reduce data communication between CPU and GPU
- GLSL OpenGL Shading Language to compute polygon normal on GPU, no need to compute normal in CPU and to store it in main memory
- Viewport Culling any part not within the viewport will not be rendered
- Sub-Part divide a very large part into sub-parts to utilize viewport culling

New Rendering Performance

- 5.65million elements (4.29m Shells, 1.36m solids, some beams, 1680 parts), 59 states
- On HP Z800 8-core, with Nvidia Quadro 6000, timing in frames/sec

	Old	New
Static Rendering	2.1	30.4
Animation 1 st loop	1.3	14.2
Avg. Animation	2.1	16.5

New Rendering Performance

- 10.65million elements (8.44m Shells, 2.21m solids, 5223 beams, 816 parts), 49 states
- Spot weld beam was drawn as circle
- On HP Z800 8-core, with Nvidia Quadro 6000, timing in frames/sec

	Old	New	Speed up
Static Rendering	1.2	22.1	18
Animation 1 st loop	0.4	10.2	
Avg Animation loop	1.25	10.5	8.4

User group and Online Documentation

- User Group more than 2200 members as of May, 2012
 - <u>http://groups.google.com/group/ls-prepost</u>
- Documentation and tutorials can be accessed from the pull down HELP menu

		Hide Back Forward Home	©ptions
4bit		Contents Index	Model Overview
4bit cation Settings	Help Documentation Tutorial Old to New Release Notes Check for Update About LS-PrePost	Cortents Introduction User Interface User In	 Model Overview Assembly and Selpart - Select which parts and assembly to display, delete . Keyword Manager - providing access to keyword editing and search interface. Create Entity - Generate entities, and also allow the user to use the drawing area to visualize entities while working on them. Display Entity - Display LS-DYNA entities such as sets, contacts, rigidwalls,boundary, etc RefCheck - Identify uareferenced, undefined, or attached entities. Renumber - Renumber IDs of model entities. Section Plane - Create cross sections of the model. Model Selection - Open and select multiple models. Subsystem - Interact with an manage sub-systems. Group - Create and manipulate groups of parts. Yiew -Save and retrieve appearance, color, and orientation settings. Appear - Change the appearance of selected parts. Annotation - Add annotations to a model. Split Window - Split graphics region into multi-view.
			Explode - Explode/separate parts so that they can be viewed more easily. Light - Apply effects using up to ten independent light sources.

Other new features and improvements in LS-PrePost3.2/4.0

Batch mode Operation – (-nographics)

- Batch mode operation with full graphics capability using LS-Prepost
- Run lsprepost 3.2 with command file and use nographics
- Works very well on PC/Windows platforms
- Has limitations on Linux platforms:
 - Machine to run lsprepost with –nographics must have OpenGL and X capability
 - Local machine that logs into the remote machine must also have OpenGL and X capability
 - If the above conditions not met, use the Linux virtual frame buffer (Xvfb) for batch mode:
 - Xvfb :2 -screen 0 1074x800x24

LS-PREPOST Features for LS-980

- Support for Multi-Physics keywords: *CESE, *ICFD and *EM
- Multi-Solver keyword files can be displayed and edited
- Models can be a mixture of Multi-Solver and Mechanical meshes
- ICFD modeling can be 2D or 3D with mesh adaption (remeshing)
- Support for ICFD LevelSet functions

CESE with stochastic particles

Fringe by size with velocity vectors

Fuel Tank Fluid Surface shown by Levelset part.

Levelset can be fringed with CFD variables, and with velocity vectors on the surface

New XYPLOT layout

 New XY plot interface allows xy plots to be drawn to main graphics windows, or to a separate page with multiple plots per page

Fringing by Script

- In the fringe expression interface, use script (a programming code) instead of expression
- Assign components to variables
- User writes the script (code) to perform whatever data manipulation to get final result

Metal Forming Application

Metal Forming Graphics User Interface (GUI) is designed to ease the setup of a stamping simulation input data using LS-DYNA.

- Easy Setup
- General Setup

Metal Forming \rightarrow Toolbar

Metal Forming \rightarrow eZsetup

Metal Forming eZsetup Wizard						x
3 Piece Air Draw	Setup	Die	Binder	Punch	Blank	
	DrawTy	pe Air Drav		Tagala Draw		
	0 3-Pie	ce Air Drai	W 0 5-Piece	Toggle Drav	/	
	-Virtual(o	contact) O	ffset:			
	Offse	et Die				
		et Punch/b	inder			
	Process	Selection:				
	Selected	l Processe	s	Availab	le Process	
	Forming	9	<-	- Gravit Formin	y Ig	
				Trimmi	ng Back	
					Duck	
	Unit syste	em;mm-sec	ond-tonne-Ne	ewton		
	Note:All t eZsetup v	ools must l vorks only	pe in home po with LS-DYNA	sition, Release R5	.1.1	
🗹 AutoHide			Bad	k Ne	xt	Close

- Standard draw type
- Step-by-step tool definition
- Easy draw bead modeling
- Automatic tooling position
- Multiple processes
- User control options

DynFold Application

- Dynfold is designed to prepare input files for simulation based airbag folding process. Typical physical airbag folding process is done in 4 to 5 steps (runs of LS-DYNA).
- Dynfold user interface is designed to setup one step at a time. Often the deformed shape at the end of one folding step is used as a starting mesh for the next step.
- The airbag model is expected to have nodes, elements, part, section and material defined before using this interface.
- The physical folding process is generally of the following form:

 a. hold the bag in position while being folded
 b. clamp a portion of the bag to a folding tool
 c. Apply motion to the tool in translational direction or rotational direction or combination of both.
- At present 4 folding tools are supported: Loadmesh, SPC, BPMF(BOX), Stitching and Tuck

DynFold Setup Process

- Define Parameters: Define Project Step Name, Termination time, airbag tool Material Parameters.
- Load Airbag: Load finite element mesh, Position airbag by translate, rotation, etc.; show airbag, or turn off show.
- Define Airbag Folding Tools, currently there are four kinds of tools
 - Load meshing:
 - Load tool meshing file; Define tool attaching to bag.
 - Define Load Meshing Tools Motion.
 - Preview tool motion (Home position and Final position)
 - Spc_Birth_Death, BPMF(Box), Stitch

Spc_Birth_Death, BPMF(Box), Stitch

- Define boundary spc node set.
- Define Constrained
- Define Birth and Death time.

BPMF(Box)

- Define Original and Final position of the Box.
- Define contact between box and airbag parameters .
- preview of Original/Target position of the box in graphics view .

• Stitch

- Define Stitch parts and parameters.
- Define Get stitch start position and direction.
- Define stitch Birth and Death time

Define Part Motion with motion properties

Process Airbag Tools			Marci
□ LoadMesh1	Tool Motion		New
Tool Parts	Motion Define		Output
218 left roller	Type: Motion V Add	Motion	Run Dyna
E Contact between tool	PTD: 218 . Fick		
Death: 1e+010	Motion Property:		
Thick: 1	Traps X V Dist:	review 1	
Attach2Bag		roviou	
Node Set(PID: 118			
Node ID: 1074	I∕ Roller ⊫ Roller Setting		
Node ID: 1073	NTurns: 5 BarThk: 1 Dia:	5	
E Node Set(PID: 218			
Node ID: 1079	Rota Dir: X V Irans Dir: Y V	2VIEW	
Node ID: 1051	Tool Motion List:		
Node ID: 1070	Tool Motion(Pid: 118; Property: Fix)		
Motion Setting	Tool Motion(Pid: 218; Property: Fix) Tool Motion(Pid: 118; Property: Motion; Roller: Yes)		
Tool Motion(Pid: 1	Tool Motion(Pid: 218; Property: Motion; Roller: Yes)		
- Tool Motion(Pid: 1			
Tool Motion(Pid: 2			

*Airbag_shell_reference_geometry

- *Airbag_shell_reference_geometry is the required data for airbag deployment in LS-DYNA
- LS-Prepost creates this data by asking user to pick the parts that make up the airbag in 3D final configuration and unrolls them into 2D flat panels.
- Element IDs are preserved with new nodal coordinates

*Airbag_shell_reference_geometry

Part Replace

- Model->PartD->Replace
- To replace a part with another part
- The 2 parts do not need to be the same in no. of elements/nodes.
- Connection between others part will be done automatically when it is possible

Part Data	CreEnt Surf PartD Solid Display GeoTol 95 RefChk Mesh Renum Model
Show O	Cre 🔘 Mod 🔘 Sear
🔿 Assign 🔘	Prop () Replace
Model Selection	
2-LS-DYNA keyword deck by LS-Pr	erost ePost
1st part list	2nd part list
8006-ACCEL@B_pillar_upr_hs 8011-Module_Conn_M:Accel_To_1 10293'Module_Conn_F:Accel240 10302-7571-F27847-AA1+PIA-1_F 10358-7571-F204A41-BA1/4-ROC 10421- 11298-Meshless Spotweld(10302:	Compare 10358-7571-F204A41-BA1/4-ROC
	==>
	Reject
	Accept
Load Pick part	Load 📃 Pick part
[Done

Part Replacement

Beams are connected properly automatically

Other Miscellaneous Improvements

- Many bugs have been fixed in geometry engine
- Improved mid-surface generation from solid model
- More robust trimming and solid cutting
- Improved automatic solid meshing
- More robust LS-DYNA model checking with auto fixing
- Particle, temperature post-processing data support in FEMZIP format
- Solid element and seatbelt element splitting
- Element edit with check, locate and repair

User written script

- C-like programming scripting language to execute LS-PrePost commands
- Allows "if then else", for, and while loop operations
- Uses LS-PrePost DataCenter to extract model data: like no. of parts, part ID, no. of elements, no. of nodes, etc.
- Extracted data can be used as variables to perform operations
- Most suitable to perform the same operations over different part of the model

User written script

Sample script to extract no. of parts and all part IDs, then draw each individual part and print it to a file with the part id as file name

```
/*LS-SCRIPT:PartId repeat cmd*/
DataCenter dc;
Int partnum, *ids;
define:
void main(void)
Int i = 0;
char buf[256];
Int modelld:
modelId = GetCurrentModelID();
DataImportFrom(&dc,modelId);
partnum = DataGetValidPartIdList(&dc,&ids);
for(i = 0; i < partnum; i = i+1)
sprintf(buf,"m %d",ids[i]);
ExecuteCommand(buf);
ExecuteCommand("ac");
sprintf(buf,"print png part_%d.png LANDSCAPE nocompress gamma 1.000 opaque enlisted
     \"OGL1x1\"", ids[i]);
ExecuteCommand(buf);
}
free(ids);
} main();
```

Suppress Boundary line for surface meshing

Common boundary lines between two surfaces can be suppressed to form a joint surface, this will allow the mesh to cross boundary lines to give better mesh

Solid Meshing with Hex Element

 Solid meshing by blocks - using cut and dice method and then sweeping

Metal Forming - Die System Module

Complete metal forming Die design system

	Die System Module	
	Preparation Tipping Unfolding Binder P.O.	Addendum Output
2012(11:34)-64bit	Prepare	Part Define
FEM Application Settings Help	Import	Shell Part 1 : Working Part
Airbag Folding	Middle Surface	Sheiraitt, Wolking Part
Dummy Positioning	Surface Mesh	
Seatbelt Fitting	Model Check/Repair	
Metal Forming General Setup	Fill Tanas Hala	
Roller Hemming Die System Module	Fill Inner Hole	
1 ALE Setup		
Model Checking		
Intrusion Measurements		
		Add to DSM Job
		Done

Metal Forming - Die System Module

- Provides a user friendly interface to design the complete tooling system
 - Starting from CAD geometry
 - Tipping: make sure that the part can be made without undercut
 - Many options are available to allow user to check and position the part with a desired orientation
 - Binder design is fully parametric
 - User can easily manipulate the binder surface
 - Addendum design obtain a smooth surface that is tangent to both the tool part and the binder
 - To make sure that the part can be deformed correctly
 - Parametric patch method will be employed
 - Initial blank size estimation one step solver

THUMS Positioning Setup

- THUMS Total Human Model for Safety
- THUMS positioning Setup Setup LS-DYNA keyword data to position the dummy by simulation
 - H-point and Joint method –
 define amount and direction of rotation at joint
 - Tools method introduce tools to pull or move the limbs to a desired location

Summary

- New GUI provides better look and feel, also yields maximum windows space for graphics, at the same time old interface is still available to user
- Capabilities in the geometry engine allows CAD data to be modified and repaired before meshing and therefore eliminate tedious mesh modification
- New rendering in Version 4.0 employs the latest rendering techniques in OpenGL, speeds up the rendering by many times, viewing and animation of a very large model now is possible
- LS-DYNA model data check is a very important tool to ensure the validity of the data before running LS-DYNA
- Scripting language will be further developed to provide much more powerful capability

LS-PrePost Recap

LSTC is committed to continue to develop and enhance LS-Prepost by improving its stability, robustness and user friendliness

New features have been added continuously to keep up with the development of LS-DYNA both in the postprocessing and pre-processing

New Applications have been implemented to let user do special LSDYNA job setup easily and quickly Users' feedback and suggestions are always welcome Thank You !

Dummies & Barrier Dr. Christoph Maurath

Released LSTC Dummy Models

Detailed Models	
	HYBRID III 5 th
	HYBRID III 50 th
	HYBRID III 95 th (scaled)
	SID IIs D
	EuroSID 2
	EuroSID 2re
	USSID
	HYBRID III 6-year-old
	Free Motion Headform
	Pedestrian Legforms
	BioRID II (ALPHA)

FAST Models

HYBRID III 5th

HYBRID III 50th

HYBRID III 95th

SID IIs D

HYBRID III 5th Lower Body

HYBRID III 50th Lower Body

HYBRID III 50th standing

LSTC Dummy Models in Development

Model	Status
MOGEI	Otatus
HYBRID III 3-year-old	Material Optimization
HYBRID III 95 th	Model Improvements and Material Optimization
HYBRID III 95 th FAST	Model Calibration and Sled Verification
BioRID II	Model Improvements and Material Optimization
WorldSID 50 th	Model Build-up
THOR NT	Meshing
Ejection Mitigation Headform	Material Optimization
HYBRID II	Meshing

Planned LSTC Dummy Models

- Pedestrian Headforms
- FAST versions of EuroSID 2 and EuroSID 2re
- Q-series child dummies
- Flex PLI
- WorldSID 5th percentile female

We committed to the continued development and support of our released and future dummy models

Dummy models are available at no additional cost to current LS-DYNA customers

All models are unencrypted and may be changed by customers

Feedback is greatly appreciated but not required atds@lstc.com

Thank You !

Incompressible CFD Dr. Facundo Del Pin

Introduction to the Incompressible CFD solver

- Stabilized Finite Element formulation for the Fluid Mechanics Navier-Stokes equations
- Free surface capabilities and multi-phase approximations,
- Can run as a stand alone implicit CFD solver or be coupled with the structural (FSI problems) and thermal solvers of LS-DYNA,
- ALE approach for mesh movement, all FSI boundaries are Lagrangian and deform with the structure.

Coupling with other LS-DYNA solvers

- Scope of the new 980 solvers to be coupled with LS-DYNA solvers in order to solve complex fluid-structure or thermal problems,
- Strong coupling is available for implicit mechanics. More robust but more costly,
- Loose coupling for explicit mechanics. Less robust and less costly. Suitable for simpler couplings.

Applications : Aerodynamics

Ahmed bluff body example Benchmark problem

Drag calculation and Study of vortex structure, Turbulence models available for solving Can run as a CFD problem with static body or be transformed in a FSI problem with moving body (Eg : pitch or yaw movement).

time[sec]: 0.000000

Applications : Slamming

Space Capsule impact on water (Slamming problem) :

Derived from Orion water landing module /awg.lstc.com LS-DYNA Aerospace Working Group, NASA NESC/GRC

Free fall impact / Strong FSI coupling Proof of feasibility using ICFD solver May be applied to similar Slamming problems

Sloshing

Water Tank example :

Moving Water Tank coming to a brutal halt, Sloshing occurring, Study of pendulum oscillations.

Strong FSI Coupling

time[sec]: 0.000000

High viscosity Liquid coming out of bottle due to finger pressure

Simulation of synthetic heart valve. Density of Solid and Fluid (blood) very close: complex FSI strong coupling case.
Conjugate Heat Transfer

Monolithic strong coupling between the solid and fluid thermal solvers providing good stability

Thermal pipe flow example

Solid Mesh

Fluid velocities and Conjugate heat analysis (cut plane of fluid vel.)

Steady state fluid temperature (cut plane through the section)

Range of Applications

- Most flows that we encounter in our daily activities are incompressible,
- Low Mach number (*Ma* < 0.3). In Air : *Vel* < 230 MPH , 370 KPH.</p>

Examples:

Ground vehicle aerodynamics, Free surface and Multi phase flows, Wind turbines, Human body, Ship hydrodynamics, etc.

Automatic Fluid Volume Mesher

- In complicated geometries meshing for CFD problems could be a time consuming process for any commercial software
- Simplification of the pre-processing stage,
- Possibility to **specify local mesh size** for better resolution,
- Possibility to add Boundary layer mesh.
- Error estimators may be used to automatically adapt the mesh.

Error Control and Adaptive Re-Meshing

time[sec]: 0.000000

MPP Scalability: Real Car Model

The results show a **speedup of 40 for 128 cpus in the CFD** only case (2.1 M elements) and a **speedup of 55 for 128 cpus in the case of FSI** (3.6 M elements).

For the next development cycle further improvements will be implemented

Incompressible CFD Roadmap

Validation/Benchmarking process under way (problems will include FSI, Conjugate Heat transfer cases as well as more Aerodynamics and Free surface analyzes).

Additional post treatments and Tools with LSPP 3.2.

See Website for additional documentation

http://www.lstc.com/applications/icfd

Thank You !

Electromagnetism Dr. Pierre L'Eplattenier

Presentation of the Physics

Solver Coupling Needed

Coupling with other LS-DYNA Solvers

Scope of the new 980 solvers : to be coupled with LS-DYNA solvers in order to solve complex multi-physics problems

Electromagnetics for Magnetic Metal Forming

Al sheet forming on conical die : In collaboration with: M. Worswick and J. Imbert University of Waterloo, Ontario, Canada

Electromagnetics for Magnetic Metal Forming

Electromagnetics for Magnetic Metal Forming

Simulation of a steel tube-shaft joint for Automotive power train component In collaboration with: Fraunhofer Institute for Machine Tools and Forming Technology IW Chemnitz, Dipl.-Ing. Christian Scheffler Poynting GmbH, Dortmund, Dr.-Ing. Charlotte Beerwald

Electromagnetics for Inductive Heating

Heating of a steel plate by induction In collaboration with: M. Duhovic, Institut für Verbundwerkstoffe, Kaiserslautern, Germany

Electromagnetics for High Pressure Generation

Free surface velocity vs time

Electromagnetics for Railgun Simulations

Other Possible Applications

Magnetic Metal Welding in collaboration with M. Worswick and J. Imbert, University of Waterloo, Canada

Ring expansions experiments. Various Collaborations

- G. Daehn, Ohio State University.
- H. Kim, Edison Welding Institute, USA.

• D. Chernikov, Samara State Aerospace University, Russia.

max displacement factor=2

And even Levitating objects

Advancement Status

- All EM solvers work on solid elements (hexahedral, tetrahedral, wedges) for conductors.
- Shells can be used for insulator materials.
- Serial and MPP versions available.
- 2D axi-symmetric available.
- The EM fields as well as EM force and Joule heating can be visualized in LS-PREPOST :
 - Fringe components
 - Vector fields
 - Element histories

Plan for Future

Introduction of Magnetic materials.

Further optimization of the FEM / BEM calculations.

Continue the validation process (T.E.A.M. problems).

Wishes from users. Please let us know !

Thank you for your Attention

LS-DYNA 980 Induction Heating Solver	Fringe Levels
Contours of Temperature	4.000e+02
mín=25, at node# 369761 max=25, at node# 369761	3.812e+02
	3.625e+02
	3.438e+02
	3.250e+02
Courtesy IVW GmbH	3.062e+02
	2.875e+02
	2.688e+02
	2.500e+02
	2.312e+02
	2.125e+02
	1.938e+02
	1.750e+02
	1.562e+02
	1.375e+02
	1.188e+02
	1.000e+02
	8.125e+01
	6.250e+01 _
	4.375e+01 _
	2.500e+01 _
z	
YXX	

Video: courtesy of M. Duhovic, Institut für Verbundwerkstoffe, Kaiserslautern, Germany

SPH, ALE, DEM, Airbag Particle Dr. Jason Wang

SPH Thermal Solver

- An explicit thermal conduction solver is implemented for SPH analysis
- Following keywords and materials are supported

*INITIAL_TEMPERATURE_OPTION *BOUNDARY_TEMPERATURE_OPTION *BOUNDARY_FLUX_OPTION *MAT_THERMAL_ISOTROPIC *MAT_ADD_THERMAL_EXPANSION *MAT_VISCOELASTIC_THERMAL *MAT_ELASTIC_VISCOPLASTIC_THERMAL *MAT_ELASTIC_PLASTIC_THERMAL

• Thermal coupling with SPH is implemented

Metal Cutting with Heat

LS-DYNA user input Time = 0

Metal Cutting with Heat

Heat source: *BOUNDARY_FLUX *MAT_JOHNSON_COOK (stress flow depends on the temperature)

Friction Stir Welding with SPH

Courtesy of Kirk A Frazer at ROCHE

Rigid body tools

Johnson cook Material with Viscoplasticity

Heat Capacity = 875, Thermal Conductivity = 175

EQHEAT = 1.0, FWORK=1.0 for heat source

ADD_THERMAL_EXPANSION for workpieces

Friction Stir Welding with SPH

Courtesy of Kirk A. Fraser at ROCHE

Temperature

ALE and Thermal Coupling

ALE *MAT_GAS_MIXTURE coupled with shell structure using *CONSTRAINED_LAGRANGE_IN_SOLID

Energy is removed from gas and deposited to shell via heat convection The energy is used as source term for thermal analysis

ALE Dynamic Adaptive

*REFINE_ALE

Dynamic Adaptive FEM Solid Mesh

*REFINE_SOLID

LS-DYNA user input Time = 0 Contours of Effective Stress (v-m) min=0, at elem# 1 max=0, at elem# 1

Fringe Levels 0,000e+00 _ 0,000e+00 _

Dynamic Adaptive FEM Shell Mesh

*REFINE_SHELL

Particle based Blast Loading

Real Gas Model of High Explosive Particle

- Air Particle
 - Modeled by ideal gas law: pV=nRT
 - The volume of molecules is neglected
 - Works for low pressure and moderate temperature
- High Explosive Particles
 - Modeled by real gases: p(V-b)=nRT
 - The co-volume effect is included
 - Works for high pressure and high temperature
 - Pressure drops sharply during adiabatic expansion

•An 8 liter box filled up with air particles, the box is expanded to 16 liter

•Ratio of heat capacities $\gamma = 1.4$

•The same procedure is repeated with high explosive particles with

 $b = 0.32V_0$

Adiabatic Expansion

Discrete Element Sphere (DES)

X___W

× v

LS-DYNA keyword deck by LS-PrePost

	***	h 4
- 80		
- 11		
	à à i	
- 6 8		

	***	b 4
- 22		
- 88		
- 11	X X 3	
- 99		
		6.6

- 11	I I I	

Wet

Dry

.....

LSTC DES Bond Model

Emerge into Continuum Mechanics

- All particles are linked to their neighboring particles through Bonds.
- The properties of the bonds represent the complete mechanical behavior of Solid Mechanics.
- The bonds are independent from the DES model.
- They are calculated from Bulk Modulus and Shear Modulus of materials.

Mechanical Behaviors

LSTC Bond Model

- Every bond is subjected to:
 - Stretching
 - Shearing
 - Bending
 - Twisting
- The breakage of a bond results in Micro-Damage which is controlled by the critical fracture energy value J_{IC}.

Fracture Analysis

Pre-notched plate under tension

Quasi-static Loading Young's Modulus: 65GPa Material: Duran 50 Glass Poisson Ratio: 0.2 Density: 2235kg/m^3 Fracture Energy Release Rate: 204 J/m^2

Time = 0.0010187 mai displacement factor=100		Time = 0.0010185 max displacement factor=100		Time # 0.00102 max displacement factor#100	
					-
Case 1: Sphere Radius: N. of spheres:	0.5 mm 4000	Case 2: Sphere Radius: N. of spheres:	0.25 mm 16000	Case 3: Sphere Radius: N. of spheres:	0.125 mm 64000
Crk Growth Spd: Fracture Energy:	2012 m/s 10.2 mJ	Crk Growth Spd: Fracture Energy:	2058 m/s 10.7 mJ	Crk Growth Spd: Fracture Energy:	2028 m/s 11.1 mJ

Fragmentation Analysis

Dynamic Loading

LS-DYNA Multi-Physics Solvers

- *ALE_COUPLING_NODAL *DEFINE_SPH_TO_SPH_COUPLING
- *PARTICLE_BLAST

testing Overloping

*ALE_COUPLING_NODAL

A simple test case modeling explosion driven sand grains hitting on a plate

*DEFINE_SPH_TO_SPH_COUPLING

Penalty based SPH to SPH particle contactWill be extended to SPH and DES coupling

impact 6.18 km/s alu/alu Time = 0

impact 6.18 km/s alu/alu Time = 0

r^z

*PARTICLE_BLAST

*PARTICLE_BLAST

LS-DYNA keyword deck by LS-PrePost Time = 0

×.

LS-DYNA keyword deck by LS-PrePost Time = 0

Ľ,

Blast simulation with sand

Blast simulation without sand

Thank You !

Summary

- LSTC is working to be the leader in scalable, low cost, large scale, multi-physics simulations, leading to solutions to a variety of problems with a single universal numerical model. To make this possible:
 - LS-PrePost, LS-Opt, and LS-TaSC are continuously improving and gaining more usage within the LS-DYNA user community
 - LSTC is providing dummy, barrier, and head form models to reduce customer costs.
 - The incompressible flow solver is fully coupled to heat transfer and structures for FSI simulations
 - Also, the electromagnetics solver is coupled to heat transfer and structural elements for fully coupled simulations
 - Coupling between ALE methodology, SPH, discrete elements, and the airbag particle method will lead to new application areas in the future and improve current methodologies

Future

- LSTC is not content with what has been achieved
- New features and algorithms will be continuously implemented to handle new challenges and applications
 - Electromagnetics,
 - Acoustics,
 - Compressible and incompressible fluids
 - Isogeometric elements, contact, and related developments
 - Discrete element methodology for modeling granular materials
 - Simulation based airbag folding and THUMS dummy positioning underway
- Multi-scale capabilities are under development
 - Implementation underway (New approach which is more user friendly)
- Hybrid MPI/OPENMP developments are showing significant advantages at high number of processors for both explicit and implicit solutions

Thank You !