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Summary: 
 
LS-DYNA models for Implicit Mechanics are getting larger and more complex.  We are continually 
seeing models where the linear algebra problems in Implicit Mechanics have 3 to 5 million elements 
and know of at least one that is nearly 30M elements.  It is these very large linear algebra problems 
that distinguish the computer requirements for Implicit Mechanics.  This paper will present a study of 
the performance of the MPP implementation of implicit mechanics in LS-DYNA examining such issues 
as performance, speed-up, and requirements for computer configuration.  
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1 Introduction 

LS-DYNA has implicit technology integrated with its explicit technology.  Implicit technology provides 
the capabilities to perform transient analyses with larger time steps as well as many linear analyses 
including vibration computations.   As problems get larger, implicit distinguishes itself from explicit in 
that it has very different computer requirements.  The differences are really highlighted by the 
requirement to factor matrices involving the global stiffness matrix.  As we move to larger problems we 
move to larger computers which, nowadays, are MPP computer clusters with multiple cores per node. 
 
This paper present a study of implicit requirements and performance on an MPP compute cluster 
housed at the Livermore offices of LSTC.  We will try to set expectations of performance and give 
guidelines for computer hardware requirements. 
 

2 The Test Environment 

For the first test problem we are using is a 10M element version of the National Center for Automotive 
Crash Silverado model.  LSTC refined the original model to have 10M shell elements.  It has over 600 
materials. The model uses both tied contact and automatic single surface contact.  The resulting linear 
algebra problem has 60M rows and 10.6 billion nonzeroes in the factored matrix.  A gravity loading is 
applied and one nonlinear implicit time step is executed to reach the static loading state. 
 
The second test problem is a solid element model from the Atomic Weapons Establishment 
benchmark suite. This model is a simplified nonclassified version of their production analysis models.  
It has 6 nested cylinders held together by  surface_to_surface contact.  This model just uses elastic 
material and the constant stress solid element.  The benchmark problems range from 100K to 20M 
elements.  We are using the 4M element model. There is prescribed motion on the top and a load on 
the bottom.   
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Figure 1: Test Problems 

 
All runs were made on the fresno cluster in-house at LSTC.  It has 32 compute nodes each with dual 
quad Intel E5520 Xeon processors at 2.27 Ghz CPUs for a total of 128 core.  Each compute node has 
a 128 Gbyte I/O drive and 48 Gbyte of RAM. 
 

3 Results on Silverado 10M Element Model 

The following table shows the results on the 10M element Silverado Model.  It contains the required 
memory before the linear algebra, the memory available for the linear algebra, factor wall clock time in 
seconds, and forward/back solve wall clock time in seconds for various combinations of compute 
nodes and cores per compute node 
 

# Compute 
Nodes 

# Cores 
per node 

Memory pre 
Linear Algebra 

Memory for 
Linear 

Algebra 

Factor WCT 
(seconds) 

Solve WCT 
(seconds) 

16 1 285.0M 2703M 256.7 5.9 
16 2 137.8M 1424M 135.0 3.3 
16 4 82.1M 900M 81.7 2.2 
16 8 Ooops!    
32 1 137.8M 1424M 135.5 3.9 
32 2 82.1M 965M 79.8 2.0 
32 4 42.3M 889M 58.2 1.8 
32 8 Ooops!    

 

Table 1: Silverado 10M element MPP Performance 

 
One can see that the memory requirements before the start of the linear algebra scales linearly as the 
number of cores increase.  As a function of fracturing the 48Gbytes memory per node across the 
multiple cores the memory per core for the linear algebra decreases as well.  Eventually the memory 
per core is too small to perform the initial model input and decomposition.  The Factor time speeds up 
in an acceptable manner allowing for the intra-node conflicts caused by sharing nodal resources 
across the multiple cores.  The solve time is also showing reasonable speed ups.  One should note 
that solves may slow down due to I/O contention caused by multiple cores utilitizing the single I/O 
device on each compute node. 
 
LS-DYNA also has an MPP Hybrid version.  In this version we use distributed memory parallelism 
(MPI) across the nodes and shared memory processing (SMP) on the nodes. This keeps the memory 
in one more manageable unit and reduces the amount of MPI communication.   Execution time is 
comparable between the pure MPP and the MPP Hybrid versions.  But for large problems where 
memory considerations restricts the number of the cores that can be used per compute node then the 
hybrid version allows to use all of the compute cores on a compute node to reduce overall wall clock 
time. 
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# of Nodes # of Cores Pure MPI 
WCT 

Hybrid 
WCT 

16 1 256.3  227.0  
16 2 135.0  130.0  
16 4 81.7  85.7  
16 8 Ooops!  69.5  
32 1 135.5  131.3  
32 2 79.8  80.6  
32 4 58.2  55.5  
32 8 Ooops!  51.6  

 
Table 2: Silverado 10M element MPP and MPP Hybrid Performance 

4 Results on AWE Cylinder 4M Element Model 

The following table shows the results on the 4M element AWE Model.  It contains the required memory 
before the linear algebra, the memory available for the linear algebra, factor wall clock time in 
seconds, and forward/back solve wall clock time in seconds for various combinations of compute 
nodes and cores per compute node 
 

# Compute 
Nodes 

# Cores 
per node 

Memory pre 
Linear Algebra 

Memory for 
Linear 

Algebra 

Factor WCT 
(seconds) 

Solve WCT 
(seconds) 

16 1 30.6M 4000M 37057 1040 
16 2 15.5M 2000M 20910 1185 
16 4 8.0M 1000M 11137 619 
16 8 Ooops!    
32 1 15.5M 2719M 19605 62.9 
32 2 7.9M 1421M 10784 59.2 
32 4 4.1M  Ooops!   
32 8 2.1M Ooops!   

 

Table 3: AWE Cylinder 4M element MPP Performance 

 
 

# of Nodes # of Cores Pure MPI 
WCT 

Hybrid 
WCT 

16 1 38849 38707 
16 2 22787 23173 
16 4 12580 14065 
16 8 Ooops!  10062 
32 1 20375 20486 
32 2 11546 11899 
32 4 Ooops! 7478 
32 8 Ooops!  5555 

 
Table 4: AWE Cylinder 4M element MPP and MPP Hybrid Performance 

 
It should be noted that solid element models have a vastly increased density in the original matrix and 
the resulting factorization.  This converts into much larger memory and time for the associated linear 
algebra.  The large number of compute nodes allow the factorization to stay in memory to reduce the 
solve wall clock time.  The hybrid version allows even more reduction in wall clock time because it 
allows the use of the additional cores per compute node. 
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5 Serial Memory Bottleneck 

 
One of the features of the implicit implementation in LS-DYNA is a serial memory bottleneck during the 
Symbolic Factorization Phase.  This is due to the requirement for computing the sparsity perservation 
ordering on the compressed graph for the entire model.   We have eased this problem in the last year 
by having the MPI processes on a compute node cooperate on the use of available memory.  
 
Currently LS-DYNA uses Metis.  We have also evaluated other sparsity presevation ordering software.  
None were an improvement over Metis.  We have started a long term research project for a new 
ordering algorithm that is both scalable in memory and time.   
 

6 Computer Resources 

6.1 Memory Requirements 

 
As described in the previous sections, memory on a node for the MPP cluster will be a limiting factor.  
The amount of memory per node should be (440/P + 75)*N where P is the expected total number of 
cores and N is the global number of nodes in the model.  The 440 comes from a simple linear fit to the 
memory usage for a number of problems including the two test problems in this paper. 
 
Remember that the memory on a node not only has to hold the LS-DYNA work array whose length is 
given by the memory=xxxxM on the command line but also dynamic memory for MPP core utilities 
including Metis, the matrix assembly package and the LS-DYNA executable.  The authors always use 
the following memory specifications on 16 and 48 Gbytes per node clusters 
 

16 Gbytes  48 Gbytes  
Cores Memory Cores Memory 

1 1500M 1 4000M 
2 800M 2 2000M 
4 400M 4 1000M 
8 200M 8 500M 

   
The authors also recommend not using the memory2= option on the command line for implicit.  The 
resulting memory imbalance among the processes will negatively affect the overall performance. 
 

6.2 I/O Requirements 

To keep memory to an acceptable level the factorization of the global stiffness matrix must be stored 
on disk for these large problems.  At LSTC we have 128 Gbyte disks on each node.  This allows us to 
easily hold the scratch files for the test problems in this paper. 
 
One should also remember that the multiple cores on a node will contend with the single I/O resource 
so fast disks are also required.  While not covered in this paper, we expect that this I/O contention will 
have a more negative effect on eigenvalue computations.  For those problems fewer cores might lead 
to better overall performance.   
 
Our experience to-date indicates that local disks on each node give better performance for the scratch 
files for the numerical factorization.  This is because there are only 1 to 8 I/O streams interacting with 
each other on the local disk.  On a global file system there will be an I/O stream for each MPI process. 
Such large number of I/O streams and the vast volume of data in each stream will easily overwhelm 
most global file systems.  
 


