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Abstract

The computation of fluid forces acting on a rigid or deformable structure constitutes a major problem in fluid-
structure interaction. However, the majority of numerical tests consists in using two different codes to separately
solve pressure of the fluid and structural displacements. In this paper, a monolithic with an ALE formulation
approach is used to implicitly calculate the pressure of an incompressible fluid applied to the structure. The
projection method proposed by Gresho is used to decoupl e the velocity and pressure

Introduction

A computational procedure is developed to solveblgms of viscous incompressible flows

interacting with rigid or deformable structure. Térbitrary Lagrangian Eulerian method (ALE)

is used to move the internal fluid nodes whereas libundary fluid nodes move with the

structure. The coupling of the mesh motion equatiamnd the fluid equations is essentially done
through contact surface boundary conditions. Intinoonm Mechanics, two descriptions are
considered for the motion in a continuum media

ALE Description

The ALE description for incompressible viscous ftohas been developed by Hughes at al [1],
to solve free surface flows and fluid-structureemction problems. The general kinematics
theory developed in [1] serves as the basis ofLthgrangian-Eulerian description. For this
purpose, the authors define three domains in spackemappings from one domain to the other.
The first one, called the spatial domain, is coamsad as the domain on which the fluid problem
is posed. The spatial domain is generally in motimtause of moving boundaries. The second
domain, called the material domain, is to be thowdlas the domain occupied at time t=0 by the
material particles which occupy the spatial domaintime t. The third domain, called the
reference domain, is defined as a fixed domainutjinout. From these domain descriptions, we
can see that the Eulerian description is obtainednathe spatial domain coincides with the
reference domain, whereas the Lagrangian referenabtained when the material domain
coincides with the reference domain.

Both the material and spatial domains are generallynotion with respect to the reference
domain; it is convenient to express the materiaktderivative of a physical property in the

reference configuration.

@=g, +clp (1)
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Where¢ is the material time derivative, anggl is the time derivative when freezing coordinates

in the reference domain, c is the convective véoci

c=v-y™ (2)
v is the fluid velocity, andv™" is the mesh velocity. In the Eulerian descriptithe mesh
velocity is zeroyv™" =0, whereas in the Lagrangian descriptidfi" =v, andc = 0.
In the ALE formulation, the mesh nodes move withadpitrary velocity. The choice of the mesh
velocity constitutes one of the major problems wifie ALE description. Different techniques
have been developed for updating the mesh in d fhation, depending on the fluid domain. For
problems defined in simple domains, the mesh vl@an be deduced through a uniform or non
uniform distribution of the nodes along straighek ending at the moving boundaries.

Governing equations

The Lagrangian formulations are frequently usedsdtve the structural behaviour. Indeed,

displacements of the nodes and the elements ogramgian mesh correspond to the movements
of material. The material edges always coincidehwite edges of the elements. Thus, if the
material sharply becomes deformed, the mesh isesidy to distortions. In general, the

structural deformations are weak so that the Lagemn mesh remains regular and is not
subjected to distortions. The boundary conditiores easily imposed because the edges of the
mesh represent the limits of the physical domainnducalculation. For these reasons, the
Lagrangian formulations are much appreciated. la artesian coordinate system, the

displacement of the structure u in a dom@ig (see Fig.1) is governed by:

9°u,
Ps Py =0 (U),j *+ 050, (3)
with initial and boundary conditions:
O
U =u ond ¢ x[0,T] (4)

Two points of view are generally considered to dbscthe movement of a fluid. The first is
Lagrangian where the speed of the mesh follows dhahe fluid. The disadvantage of this
description is to generate great distortions of mdse second is Eulerian and consists in
studying the movement of the fluid in fixed positgo The domain of study is fixed and the fluid
is updated constantly in this one. This methoduhices a term of convection into the equations
to be solved. It avoids the great distortions oSmeHowever, the difficulty is deferred to the
interface where it is Aifficult tn ranracant thanhdan: ~anditinne far g problem of interaction
fluid-structure.
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Figure 1. Fluid and structure domains

So, we made recourse to a mixed formulation. Tdisrlis the ALE method which combines at
the same time Eulerian and Lagrangian descriptiondescribe the movement of the fluid
particles. In this framework, the velocity of thecompressible viscous fluid in a domain is
characterized by the mass and momentum consentati@such that:

v, =0 inQ, x[0.T] )
v, m 1 —q
E-'-(Vi ~Vi M _p_FTiJ,J' =g, inQx[07T] ©)

wherev, and p; indicate, respectively, the flow velocity comporeand the fluid density. The
term v represents the velocity of the mesh.vif =0, we obtain the Eulerian formulation

because the convective velocity of the mesh is. ntillv{" =v,, we obtain the Lagrangian

formulation for which the convective velocity isetfiuid velocity. The quantity; —v" is the
relative velocity and the stress tengpiis commonly defined by:

7, = eV, v )= pg, ()

where L is the fluid dynamic viscosity.
The momentum equation is to be solved with theéaintondition and the boundary conditions:
v,(0)=0 inQ, (8)

O
v.=vi ond,, x[0,T] 9)

O
wherev; are the imposed velocity componentsdid,. .
The boundary conditions on the fluid-structure ifstee X2, are given by :

v, :% on X, x[0,T] (10)

And p =0, on the outflow boundary

Fluid Analysis Algorithm

It is well known that the main difficulties arisirig the numerical solution of the convection-
diffusion equations are due to their no-self-adjaharacter. The standard Galerkin method
leads to no physical spatial oscillations when iggpto the high convective case. To preclude
such anomalies, the most popular method beingseetiupwind differencing on the convective
term via Petrov-Galerkin methods (see, for exampieinrich & al [2]; Heinrich and
Zienkiewicz [3], Belytscho & al. [4]). Although tBes methods are precise and stable, we will
use a ‘split’ method which is a simple mean to obtarobust and effective formulation. This
time-split method decomposes the time step intoghases :
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— Phase 1 is a solution of the Lagrangian equatdmsotion (advection terms are nil) updating
the velocity field by the effects of all forces.rRbe fluid, the velocity-pressure formulation of
the discretized problem is decoupled by the prajaanethod (for more details, see Cho and Lee

[5D.

— Phase 2 adds advection contributions, and isremtjtor runs that are Eulerian or contain some
relative motion of mesh and fluid.

In order to effectively solve the pressure and eitiles satisfying the continuity constraint Eq.(5)
for the phase 1, we adopt the fractional methoggsed by Gresho [6]. The idea of these
methods is to decouple the velocity v and the piresg. These are based on a resolution in three
steps of the Navier-Stokes equations.

Hereafter, we describe briefly the above methodaigrangian formulation:

— Intermediate velocity. The first step consistscaiculating an intermediate velocity’ ,
solution of the Naviers-Stokes equation withoutrigknto account the continuity constraint.

*ntl g HE n 1 5 n|;
Vi _Vi +At _Vi I — i + i n Q 11
(pF L ,0,: pY g J F ( )
* N+ aun
" =2 onaQ, 12)
ot

— Projection. As the velocity” does not yet satisfy the incompressibility comhitEq.(5), it is
projected on a divergence free space to get anuatle@pproximation of the velocity. This is
obtained from :

v =y, + S ap. (13)

F
with v* =0. The termAp is a pressure increment.
The second step consists in deriving a Poissontiequiar the pressurp. In fact, by taking the
divergence of Eq.(13) and using the incompressibondition Eq.(5), we obtain :

1 1 * N+l .
— Ap"t=—v in Q 14
Pii At F (14)

Pr "
Once the corrective pressufg"™ has been determined, the final velocity field lisained from

n+l.

the intermediate velocity” andAp™:

vt =y =Bl ing, (15)
Pr
— Pressure update. Since v is the physical velatigypressure p can be given fréyp™".
pt = p" +4p™ (16)

n+l

For the phase 2, we used a first order Godunov adettthe Donor Cell (see Benson [7] and
Amsden & al. [8]). This step is bypassed for a puteagrangian calculation. In all other cases
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(Eulerian and ALE calculation) the relative velgcit, . =v; —v{" is not null, and we must
calculate the flux of momentum between cells. Famhecell (see Fig.2), we calculate the volume
swept out by each of faces relative to their Lagram positionsx, . According to the sign of
these volumes, we add or remove momentum to the cel

x
¥ 8 x fiaf)

Figure 2. Advected volume
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Figure 3. Flowchart for the time-incremental fluid-structure numerical analysis
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Numerical implementation

The numerical algorithm is sketched on Fig.3 .

In the course of the Lagrangian phase, we computetsral displacements and intermediate
velocities necessary to the projection method. Beaio displacements and velocities, we
compute nodal forces from respectively Eq.(11) &gd(12). This allows us to use the same
method to solve the structural behaviour and theidi dynamic response. The difference
between the structural algorithm and the fluid athon is the computation of stress tensors.
Then, we solve the pressure from Eq.(14) and E}.(&6, we obtain the velocity which is
solenoidal (divwg) = 0). For the Lagrangian nodes, we move the domaiptate the coordinates
of the nodes. And for the other nodes, we computentbomentum flux of the cell in order to
update the velocity.

Numerical results

To illustrate this numerical method, we study theecof a confined flow between two cylinders
which are considered as infinite (see Fig.4). Tiaenéter of the outer cylinder B = 55cm and
that of the inner cylinder isl = 2.2cm. The thickness of the walls s=1mme = 10-3 m. The
structural density, the Young modulus, the Poissamber, the fluid density and kinematic

viscosity are respectivelyp, =270&kg.m™, E =6900MPa, 7 =03, p. =100&kg.m™ and

v =0.017545n°s™. Only the inner cylinder is excited, the otheffiled. Its velocity has the
form :

V(X,Y,zt) =v,(t) = Asin(rrft) a7
with an amplitudeA = 1mm and a frequencyf = 387Hz.
symmetry
mobile
. cylinder
u’ fixed
cylinder

y

I

z

Figure 4. Problem description

We compare our results obtained by the method itestcrin this paragraph 5 with those
obtained by ASTER-SATURN and provided by Electédde France (EDF). In this paper, we
examine the evolution of the pressure at the pdirdad B which are diametrically opposite (see
Fig.4 and Fig.5). To not deform the fluid mesh a@nelate great distortions with the structural
displacement, we use an ALE mesh for the elemeas the inner mobile cylinder and an
Eulerian mesh for the others elements (see Figlhjs enables us to obtain a good
approximation of the pressure of the element sim¢kis case the mesh is not crushed.
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Figure 6. Pressure evolution at the points A and B

Figures 6 and 7 show the pressure evolution atpwiots obtained by the method adopted here
and ASTER-SATURNE code respectively. We can obs#raeour results agree well with those
reported by EDF. Moreover, the frequency of theoese is the same frequency as that the
imposed velocity defined by Eq.(17). This studymseeo enable us to validate the present
numerical method of resolution for the equationscdbed in the paragraph 1 for the rigid body.
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Conclusion

In this paper, an ALE formulation for viscous ingmmssible flow has been presented. The finite
element spatial discretization is used to solvepitoblem. However, for the advection term of
the Navier-Stokes equation, a first order Godun@thwd is used. For the computation of the
liquid dynamic response, the projection methodrefiby Gresho is implemented in order to
handle the pressure. Numerical test shows thapibjection method is an appropriate one for
predicting fluid-structure interaction problem. Thextension of this work will be the
computation of fluid forces that act on a deforneaslructure in order to take into account the
real structural behaviour.
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Figure 7. Pressure evolution at the points A and B (ASTER-BRNE)
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