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Abstract

During the last years considerable effort was devoted to better numerical treat-
ment of contact problems. This fact is due to the growing computing power
which lead to more and more sophistication and detailed technical models
within engineering analysis. Due to the more precise modelling within the as-
sociated discretization process often unilateral constraints have to be consid-
ered. Hence better discretization techniques, especially for finite deformations,
are needed to solve problems with contact constraints in an efficient and ro-
bust way. In this paper we will discuss some recently developed discretization
schemes and algorithms for the treatment of contact constraints.

The presentation is split into two parts. The first one is devoted to dis-
cretization techniques for contact problems which fulfill the BB-condition
needed for a stable contact discretization scheme. This leads to a discus-
sion of weak enforcement of the contact constraint conditions which results in
so-called mortar methods for linear and nonlinear problems. Here also special
remarks are made with regard to efficient solution schemes which are based
on a total gap vector at the contact interface.

The second part of the presentation is related to adaptive finite element
methods for large deformation thermo-mechanical contact problems. Here a
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special staggered scheme is developed in which different finite element meshes
are combined to solve the thermo-mechanical contact problem. Based of the
methodology of the Zienkiewicz, Zhu error indicators based on superconvergent
patch recovery special error indicators are developed for the the mechanical
and thermal part of the problem including the contact constraints. Further-
more an error indication in time is derived for the thermal heat conductance
equation based on a time-space discretization which uses a continuous Galerkin
scheme for the time integration. Using such integration algorithm one can de-
rive again a error indicator by assuming superconvergent time points. This
method is applied to solve an example with known analytical solution which
allows the computation of efficiency indices. Here it can be shown that the
developed adaptive time stepping scheme results in very good efficiency of the
method.

For all parts, the basic theoretical basis is derived, algorithmic implications
are discussed and explanatory examples are presented to show the properties
of formulations when compared to existing ones.

1 Discretization for Non-matching Meshes

By using general mesh generators, unstructured meshes can be constructed in
which nodes in the contact interface do not assume the same coordinates, see
Figure 1. Then the formulations discussed above can no longer be applied,
even in the geometrically linear case.

Figure 1: Contact discretization with non-matching meshes.

Methods for connecting finite element domains with non-matching grids
(see Figure 1) are frequently used for parallel computations. Such formula-
tions have different origins, and hence have also received special names. A
commonly used approach is the mortar method. However, other methods like
the Nitsche method exist. The formulations are designed in such a way that
they fulfil the BB conditions, also called inf-sup conditions, and hence lead
to a stable discretization. For a good literature overview and the underlying
mathematical theory we recommend (Wohlmuth, 2000a). There are also ap-
proaches which were developed in the engineering literature, e.g. see (Simo
et al., 1985) or (Papadopoulos and Taylor, 1992). Here either a Lagrange or
penalty formulation was applied. Treatments which include friction can also
be found in (Krause and Wohlmuth, 2001) or (McDevitt and Laursen, 2000).
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1.1 Mortar method

The mortar method is a special technique to enforce contact constraints in
the discretized system for non-matching meshes. The method is based on
a Lagrange multiplier formulation in which special interpolation functions
are used to discretize the Lagrange multiplier in the contact interface. The
method which leads to a non-conforming approach is based on direct enforce-
ments of the constraints, and hence is equivalent to the direct constraint elim-
ination. This method is described in (Bernadi et al., 1994) and (Wohlmuth,
2000a). It leads to a positive definite system of equations. Another method is
related to the weak enforcement of the constraints by applying the Lagrange
multiplier method. In the mortar literature different interpolations for the La-
grange multipliers are introduced. In general, one can use linear, quadratic
or even higher order interpolation functions. However, due to the weak formu-
lation of the constraints, mathematical conditions like the Babuska–Brezzi
condition have to be fulfilled in order to achieve a stable discretization scheme;
for details, see (El-Abbasi and Bathe, 2001) for a numerical and (Wohlmuth,
2000a) for a theoretical approach.

Several techniques can be followed to define the contact surface. One is
based on the use of an intermediate contact surface as the reference surface
and to define the Lagrange multipliers on this surface. This intermediate
contact surface C defines the mortar side in the interface. Early formulations
can be found in (Simo et al., 1985). Lately mortar discretizations, based on the
intermediate surface, have been developed in (McDevitt and Laursen, 2000)
or (Rebel et al., 2000).

Another choice is made in the mathematical literature, e.g. see (Wohlmuth,
2000b) and (Krause and Wohlmuth, 2001), which is based on the assumption
that the mortar side is one of the surfaces of the bodies in the contact in-
terface which would, for example, in our notation be the master surface. In
(Wohlmuth, 2000b) it was shown that such formulation with the appropriate
interpolation functions for the Lagrange multipliers fulfils the BB condition.
Furthermore, the Lagrange multiplier interpolation can be constructed in
such a way that the locality of the support of the nodal basis functions is
preserved. Hence this formulation leads from a mathematical viewpoint to a
stable discretization, and yields a good approximation of the contact stresses.

1.2 Contact Kinematics

Within contact formulations the Mortar method enables the connection of
unstructured meshes using a Lagrange multiplier formulation. The idea
is to variationally project the displacements from one contacting continuum
to the next, directly by transfer operators, see [1]. In this description, the
Lagrange multipliers are associated to the so called non-mortar surface. The
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other contact surface is the mortar surface. The non-mortar surface gives the
tangential ānm

α = d
d ξnm α xnm ( ξ̄

nm
, t ) and normal vector

n̄nm :=
ānm

1 × ānm
2

‖ ānm
1 × ānm

2 ‖ (1)

onto which the distance between the two surfaces is projected. This distance is
the gap between one point on the mortar and another point on the non-mortar
surface. The projection in normal direction is called the normal gap

gN :=
[
xm − xnm ( ξ̄

nm
, t )

]
· n̄nm . (2)

The tangential gap gT = gT α ānm α with

gT α =
∫ t

t0

{[
ẋm − ẋnm( ξ̄

nm
, t )

]
· ānm

α + gN n̄nm ˙̄anm
α

}
dt (3)

represents the relative displacement of the two contact points projected in
tangential direction. In case of stick there is no relative motion, so gT = 0.
In case of sliding gT is expressed by the time-dependent change of the contact
points and the tangential vector.

1.3 Weak Formulation

The contact virtual work contains the contact constraints using a Lagrange
multiplier formulation

Πc =
∫

(λN · gN + λT · gT ) dΓnm
c , (4)

where the non-mortar surface gives the integration area. The multipliers rep-
resent the contact pressure (λN ) and the tangential stress (λT ). The weak
form is decomposed into a formulation for stick

Cstick
c =

∫
(δλN · gN + λN · δgN + δλT · gT + λT · δgT ) dΓnm

c (5)

and another one for slip

Cslip
c =

∫
(δλN · gN + λN · δgN + tT · δgT ) dΓnm

c . (6)

For sliding λT is replaced by the tangential stress tT which is calculated from
the constitutive law for frictional slip; therefore it has not to be varied.

We observe that the integration along the non-mortar side using the same
shape functions for the displacement field and the Lagrange multipliers
yields a mass matrix. Assembly of all nc terms on both sides of Cc

δλT
N (M 2 u 2 − M 1 u 1 ) = 0 , (7)
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from which we can eliminate the displacements u2 on the non-mortar side by

u 2 =
(
M 2

)−1
M 1 u 1 . (8)

In (7) we have computed matrix M 1 segment-wise, e.g. M 1 follows from an
integration by dividing a segment c into i and j on the mortar side. This
integration can be performed exactly or by using a quadrature rule. For the
linear interpolation with straight segments, a two-point Gauss quadrature
is sufficient, and yields an exact integration. For higher order isoparametric
interpolations an exact integration is more involved, since the contact surfaces
can be curved, which leads to non-constant Jacobians.

Since M 2 is not a diagonal matrix the influence of one displacement u1
J

is coupled with all displacements u 2. The same is true when the Lagrange
multipliers are kept within the formulation. Also, there the locality of the
nodal basis function is lost.

1.4 Special discretization
The exact integration over the discretized non-mortar surface is only possible
in the overlapping region (see figure 2 left) of all three interpolation functions.
Note that they are C1-continuous in such a segment. As integration rule a
two Gauss-point scheme is used in each of the segments which is sufficient
for the multiplication of two linear shape functions. The mortar element

Lagrange multipliers

displacements

k k + 1

i i + 1

Mk

Nnm
i

Γnm

non-mortar

mortar

j j + 1

Nm
j

displacements

Figure 2: Mortar element description

itself can be described by the values, given in figure 2. The deformations and
the Lagrange multipliers are discretized functions depending on the surface
coordinate ξ. The shape functions for the displacements are the standard
linear interpolation functions.

Mnm
1 ( ξnm ) = 2 − 3 ξnm Mnm

2 ( ξnm ) = −1 + 3 ξnm (9)

The interpolation functions for the Lagrange multipliers M1 and M2 are
defining a dual, orthogonal, base to the standard interpolation functions.
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Due to the orthogonality property, using the shape functions (2), an as-
sembled matrix form of the weak contact constraint equation is given by

δλT
N (D 2 u 2 − M 1 u 1 ) = 0 , (10)

instead of (7). Hence the elimination (8) can now be expressed as

u 2 =
(
D 2

)−1
M 1 u 1 , (11)

where D 2 is a diagonal matrix. This leads to a contact interpolation with a
local support, which is computationally more efficient.

1.5 Example

A frictional contact problem between a block and a rigid plane shows that the
Lagrange multipliers correlate well with the stresses, see figure 3. The block
is loaded in horizontal and vertical direction with different uniform loads.
It is bent at the mortar element leftmost in vertical and horizontal, at the
element rightmost in vertical direction. Sliding and sticking elements can be
distinguished.

-4.41E+01
-3.08E+01
-1.75E+01
-4.25E+00

 9.04E+00
 2.23E+01
 3.56E+01

 4.89E+01

 6.22E+01
 7.55E+01

 8.88E+01

-5.74E+01

 1.02E+02

_________________ S T R E S S  4
Tangential stresses

Figure 3: Frictional contact problem between a block and a rigid plane

2 Adaptive thermomechanical contact

In contact problems the contact interface is not known a priori. Hence the
finite element mesh cannot be easily adjusted by hand. Due to that it is
desirable to use adaptive techniques in contact mechanics. The objective of
adaptive techniques is to obtain a discretization which is optimal in the sense
that the computational costs involved are minimal under the constraint that
the error in the finite element solution is below a certain limit. Error estimators
which are most frequently used in solid mechanics for elastic problems are
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based on residual computations, see e.g. (Johnson and Hansbo, 1992) or on
superconvergence properties (ZZ-approach), see e.g. (Zienkiewicz and Zhu,
1987). To make the ZZ-approach applicable to the thermomechanical coupled
contact problem, a special projection scheme must be applied since the stress
field and heat flux are only C0-continuous across the interface. Furthermore,
specific constraints and continuity conditions have to be taken into account to
improve the gradient recovery on the contact boundary.

2.1 Boundary value problem

In order to state the governing equations of the thermomechanical coupled
contact problem, let us first consider two elastic bodies.

Balance of Momentum and Conservation of Energy. The local sys-
tem of partial differential equations governing the coupled thermomechanical
Initial-Boundary-Value-Problem (IBVP) referred to the current configuration
is stated as

div σ + ρb = 0 − div q = ρcϑ̇ , (12)

σ = σT denotes the symmetric Cauchy stress tensor, b the specific body
force vector and ρ the current density, respectively. c denotes the specific heat
capacity and ϑ defines a relative temperature according to ϑ := θ − θ0 with
an arbitrary and constant reference temperature θ0. q the heat flux. In this
presentation we consider only quasistatic processes with purely elastic mate-
rial response. Furthermore, it is assumed that heat sources inside the body do
not exist. With F denoting the deformation gradient and the definition of the
finite strain rate tensor d := sym{Ḟ ·F−1} In the following considerations we
assumed that only moderate strain rates occur and 3αK

J θtrd << ρcϑ̇ holds.
Where K denotes the bulk modulus, α is the thermal expansion coefficient
and J = detF is the Jacobian.

Boundary conditions and Initial conditions. The boundary ∂Bα of a
body Bα consists of a part ∂Bα

σ ⊂ ∂Bα with prescribed surface loads, a part
∂Bα

u ⊂ ∂Bα with prescribed displacements and a part ∂Bα
c ⊂ ∂Bα where the

two bodies Bm and Bs come into contact. Furthermore we have a subdomain
∂Bϑ ⊂ ∂Bα with a prescribed temperature and the subset ∂Bq ⊂ ∂Bα where
the outward normal heat flux is given.

In order to specify the thermomechanical process we additionally assume
initial conditions for the displacement and the thermal field.

Contact Kinematics. Within the master-slave concept we define ∂Bm as the
master surface and ∂Bs as the slave surface. When assuming that the contact
boundary describes, at least locally, a convex region, then we can relate to
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every point xs on ∂Bs a point x̄m = xm(ξ̄α) on ∂Bm via the minimal distance
problem, see section 1.2. At the minimum distance point we can define the
covariant base vectors of the master surface am

α and the normal vector n̄m = n̄.
Furthermore we set ām

α = āα omitting the superscript m. Once the point x̄m

is known, we can write the geometrical contact constraint inequality which
permits penetration of one body into the other gN := (xs − x̄m) · n̄ ≥ 0 .
In view of the penalty formulation which will be applied to solve the contact
problem, we introduce a penetration function since the method allows a small
penetration in ∂Bc:

g−N =
{

(xs − x̄m) · n̄ if (xs − x̄m) · n̄ < 0
0 otherwise .

(13)

In order to formulate the constitutive relation for the evolution of the tangen-
tial slip, we have to compute the tangential relative slip rate between the two
bodies, see 1.2. For details of contact kinematics and the related linearizations
see (Wriggers, 2002).

Thermoelastic Constitutive Equations for Finite Deformations. Al-
though the constitutive behaviour of the bodies Bα coming into contact does
not affect the solution algorithm described here, we like to introduce some
simple constitutive equation for finite thermoelasticity.
The simplest constitutive model for isotropic hyperelasticity, being polycon-
vex, is a compressible Neo–Hookian model where the Cauchy stress is given
by

σ =
K

J
lnJ 1 +

µ

J
dev b (14)

with the bulk modulus K, the shear modulus µ, the jacobian J and the second
order identity tensor 1. The deviatoric stress in (14) is given in terms of the
deviatoric part b̄ of the left Cauchy-Green tensor b = F ·FT (Miehe, 1988).
With the definition b := J− 2

3 b. In order to construct a constitutive relation
describing the finite thermal deformation we apply a multiplicative split of the
volumetric deformation J into a thermal and stress free part Jϑ, and an elastic
part Je which induces stresses: J = Je Jϑ. The exponential constitutive law
Jϑ = e3 α ϑ is adopted for the thermal expansion where α denotes the thermal
expansion coefficient.
In the case of isotropic heat conduction the heat flow q is given by the well
known Fourier law q = −k grad ϑ with the positive thermal conductivity
constant k. Note that the relation is nonlinear since grad (·) refers to the de-
formed configuration.
To complete the formulation, we have to introduce constitutive equations in
the contact interface ∂Bc. Within the penalty formulation the normal contact
pressure is given by tN = εNg−N . The penalty parameter εN > 0 can be inter-
preted as the stiffness in a very simple spring model.
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The key idea in the constitutive model for the tangential stresses tTα is a
split of the tangential slip gT into an elastic (stick) part ge

T and an plastic
(slip) part gs

T (Wriggers, 1987) or (Wriggers, 2002): gT := ge
T +gs

T . This way
the stick part still includes micro displacements which apart from a physical
interpretation can also be called a regularization. Hence, we assume a very
simple model related to a linear spring which yields tT = cTge

T , where cT

is a material parameter. The tangential plastic slip gs
T is governed by a con-

stitutive evolution equation which can be derived by using standard concepts
of the theory of elastoplasticity. Within this framework we can formulate a
plastic slip function fs(tN , tT ) for a given contact pressure tN . Frictional slid-
ing can be determined with a slip criterion which we can specialized by the
classical Coulomb’s model fs ≡ ||tT || − µ tN ≤ 0 , where µ is the friction
coefficient. The evolution of the frictional slip can be stated in the form of
a non–associated rule in the contact zone as ġs

T = −λ ∂fs

∂tT
if fs = 0 with the

tangential slip rate ġs
T , see 1.2.

For our purposes we apply a simple model for the heat flux across the contact
interface (Wriggers and Miehe, 1994) (de Saracibar, 1998) in terms of the con-
tact pressure tN , the Vickers hardness Hv , a resistance coefficient hc0 and
a material constant ε of the form

qhc(x, t) := hc0

(
tN
Hv

)ε

gθ(x, t) (15)

gθ := ϑs − ϑm denotes the thermal gap.
In of friction the resulting outward normal heat flux q on ∂Bs

c and ∂Bm
c is the

sum of the conducted heat flux qhc and a heat source due to the frictional
dissipation dfric :

q(i) = q
(i)
hc − 1

2
dfric on ∂Bi

c (i = s, m) (16)

The frictional dissipation is given in terms of the plastic slip rate ˙̄ξ
s α

and the
tangential stress vector tT by

dfric = − ˙̄ξ
s α

aα · tT = − ˙̄ξ
s α

tTα (17)

Variational Form of the IBVP. The weak form of the balance of momentum
and the conservation of energy (12) can be achieved by taking the L2 inner
products with any test functions δuα ∈ VM and δϑα ∈ Vϑ out of the usual
admissible variation spaces VM and Vϑ, respectively. Due to the fact that the
non-penetration condition is given by an inequality, we subsequently achieve
a variational inequality (Wriggers, 2002). One of he most common approaches
to solve this problem is an active-set strategy (Luenberger, 1984), which also
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will be employed within this paper, combined with a penalty method. This
leads to an expression of the form

GM =
∑

α=m,s

GαM
i − λMfαM + GM

c = 0

Gϑ =
∑

α=m,s

Gα ϑ
i − λϑfαϑ + Gϑ

c = 0
(18)

where the variational balance of momentum GM and the variational conser-
vation of energy Gϑ , respectively, can be split in internal parts ( · )i , parts
( · )c which are associated with the contact interface and load parts f . The
parameters λM , λϑ where introduced to allow scaling of the applied loads.
The explicit expressions in (18) are given by

GαM
i =

∫
Bα

(grad δu : σ − δu · ρb) dv fαM =
∫

∂Bα
σ

δu · t̂ da (19)

Gα ϑ
i =

∫
Bα

(−grad δϑ · q + δϑρ c ϑ̇) dv fαϑ =
∫

∂Bα
q

−δϑ q̂n da (20)

The contact terms in (18) take the form

GM
c =

∫
∂Bc

(tN δgN −tTα δξ̄α) da Gϑ
c =

∫
∂Bc

(qhc δgθ+ ˙̄ξ
sα

tTα δθG) da (21)

with θG := 1
2 (ϑs + ϑm ) defining the mean interfacial temperature.

2.2 Discretization

In order to discretize the nonlinear variational problem (18) we use the stan-
dard finite-element approach. Details on the matrix formulation of the residual
and tangent operators which are needed to apply Newton’s incremental so-
lution scheme can be found in (Wriggers and Miehe, 1994) or (de Saracibar,
1998).
For our purposes we state a time-space finite element formulation where the
time axis t ∈ [0, T ] is approximated by means of a finite-element ansatz. The
key idea of this approach was initially proposed in (Hulme, 1972) for nonlinear
initial boundary value problems and has been applied for nonlinear elastody-
namics in (Betsch and Steinmann, 2001). For the considered thermo-elastic
contact problem the formulation has to be modified in a sufficient way. With
the definition of the variable z

z =
∫
Bt

∗
ϑ ρ c ϑ dv (22)
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and the function H(z)

H(z) =
∫
Bt

grad
∗
ϑ ·(−q) dv − λϑ

∫
∂Btq

∗
ϑ (−q̂N ) da +

∫
∂Bc

qhc
∗
gθ da (23)

the variational equation Gϑ in (18) can be rewritten as a ordinary first order
differential equation:

ż + H(z) = 0 for 0 < t < T with z(0) = z0 (24)

The infinitesimal frictional work dWfric in (22) is defined according to the
frictional dissipation in (17).
Next we state the time discretization of (24). In standard fashion we introduce
a partition 0 = t0 < t1 < ... < tn = T of I = [0, T ] into time intervals
In := (tn−1, tn) of length hτ = tn − tn−1. Within the sub-interval In the
transformation α(t) = t−tn−1

hτ
is introduced defining the parametric mapping

α ∈ [] := (0, 1) → In to a master element with the local coordinate α. With
dt = hτ dα and the abbreviation d(·)/dα = (·)′ the finite element formulation
of the initial value problem in (24) now reads

1∫
0

δzh [zh ′
+ hτ H(zh)] dα = 0 with zh(0) = zn−1 (25)

Here zn−1 denotes the algorithmic approximation to z at time tn−1 from the
previous time step. The trial functions z are represented by the polynomial in-
terpolation where the nodal shape functions NJ(α) coincide with Lagrange
polynomials of degree k such that NI(αJ) = δIJ and zJ = zh(αJ) are the
nodal values of zh. Accordingly, the global approximation to z remains con-
tinuous. The test functions δz are represented by a reduced polynomial ansatz
with reduced shape functions ÑI(α) of polynomial order k − 1. Inserting the
chosen interpolations into (25) yields to the algebraic equation system

k∑
I=1

k+1∑
J=1

1∫
0

ÑIN
′
J dα zJ +

k∑
I=1

hτ

1∫
0

ÑIH(z) dα = 0 (26)

For our purposes we choose a polynomial degree of k = 1, hence the shape
functions are given by N1(α) = 1 − α , N2(α) = α , Ñ1 = 1 and eqn. (26)
reduces to

z2 − z1 + hτ

1∫
0

H(zh) dα = 0 (27)

The integral in (27) is evaluated using a two point Gauss integration.
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2.3 Staggered solution scheme

The key idea to solve the fully coupled equation system efficiently is the in-
troduction of an additive operator split. It was shown in (Armero and Simo,
1992) that only an isentropic operator split preserves the contractivity prop-
erty of the full problem leading to an unconditionally stable product formula
staggered algorithm. Regardless of this fact, we apply the classical isothermal
operator split obeying a staggered time integration algorithm in which the
mechanical sub–problem without heat conduction at constant temperature is
solved first, followed by a thermal heat conduction problem at a fixed mechan-
ical configuration. Moreover we extend this solution algorithm to a separate
and independent spatial discretization of the thermal and the mechanical sub
domain to account for the different types of partial differential equations in
the thermal and mechanical phase. Within this scheme a-posteriori error es-
timates control the grid density of both sub domains independently. Thus,
each mesh can be optimized on its own. The coupling between the two grids
is established by the formal projection operators

P u
s→ t = {ut , ξ̄s

t−1}Ωs → {ut , ξ̄s
t−1}Ωt

P ϑ
t→ s = {ϑt}Ωt → {ϑt}Ωs (28)

which project the primal variables u and ϑ from the source-domain Ωs to the
target-domain Ωt and vice versa.
Projection of Primal Variables. In what follows we denote a data deliv-
ering mesh as the source mesh Ωs. A domain on which this data is projected
on is called the target mesh Ωt.
An arbitrary primal variable Φ in the source domain Ωs and the target domain
Ωt is given by

φs,t(x) =
ns,t∑
I=1

NI(x)Φs,t
I in Ωs (29)

with the shape functions NI , the nodal values ΦI and the number of nodal
points ns and nt. The projection of the source variables on to the target
grid can be formulated as a minimization problem: Find nodal values nt that
minimizes the error norm W

W :=
∫

Ω
F [φq(x) − φz(x)] dΩ → MIN (30)

where F is a specific function. Commonly a L2-norm of the form is used. Here
we choose a cheaper error norm of the form

W =
∫

Ω
λ(x) ||φs(x) − φt(x)|| dΩ
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with the weighting function λ(x) := 1
nt

∑nt

K=1 δ(x− xt
K). With this the mini-

mization problem (30) reads

W =
nt∑

K=1

||φs(xt
K) − Φt

K || → MIN (31)

It leads to a cheap formula to calculate the unknown nodal values Φt
K of the

target grid.
In problems with frictional heating the dissipation power has to be known

on the thermal mesh. For this one needs tT and ξ̇g which are also not known on
the thermal mesh. However these values can be projected with the procedure
described above since the frictional slip is known at time t.

2.4 Spatial error estimation

Within this presentation we consider the ZZ-approach. It is well known that
the quality of the recovered gradients is inaccurate at or near boundaries com-
pared to interior points. Motivated by the method presented by (Wiberg et al.,
1998) for the gradient recovery in patches including Dirichlet or Neumann
boundaries, we develop a projection method with the aim of obtaining im-
proved recovered gradients on the contact boundary, see below.
Note that since the considered transient problem is path- and time-dependent,
also time discretization errors occur depending on the amount of time steps
used to integrate the governing equations. In this study we formulate an time
discretization error indicator based on the superconvergent projection method.
Let us define the following L2-norm

‖∇ev ‖2
L2(Bv) =

∫
Bv

(v − vh )2 dv (32)

where v stands for the displacement u, the temperature ϑ and the temporal
variable z. This norm provides a measure of the space-time discretization
error. Since the exact solution for the variables u, ϑ and z is unknown we
approximate v by the recovered gradient v∗. The error norm for the temporal
variable is related to the time step In−1 since ż∗ cannot be computed in the
current time step but only in the following increment.

Superconvergent Patch Recovery in B. Within the subsets Ωm
p ⊂ Ωm

and Ωϑ
p ⊂ Ωϑ (Fig. 3), referred to as the mechanical and thermal patch

assembly, respectively, a simple polynomial expansion τ ∗
i (x) = p(x)ai of each

component of the improved gradients σ∗ and q∗, for simplicity denoted by
τ ∗, is applied. p represents an appropriate polynomial basis, and ai is a set
of unknown parameters. In general the subsets Ωm

p and Ωϑ
p do not coincide
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Figure 4: Patch assemblies

essentially. For simplicity Ωp refers to an arbitrary subset of the thermal or
the mechanical grid in the following.
A least-square-fit minimization leads to the linear equation system∫

Ωp

pTp dΩai =
∫
Ωp

p τh
i dΩ (33)

which has to be solved for every gradient component i. The nodal values at the
recovery node in the center of the patch are simply given by τ ∗

i I = τ∗
i (xI) =

p(xI)ai .
Superconvergent Patch Recovery on ∂Bc. The recovery algorithm on the
boundary can be improved substantially by taking into account the boundary
conditions, as shown in (Wiberg et al., 1998). An analogous approach is
applied here to derive improved gradients at the contact boundary. For this
purpose, we search for the closest slave node I on Γm

c related to a the master
node K of Γ2

c , see Fig. 4 right. A patch of elements surrounding node K
defines the standard patch Ωs and the set of elements surrounding node I is
henceforth referred to as extended patch Ωe. According to the principle of
actio et reactio on the contact boundary we require the improved stresses to
be continuous across the interface

[[t∗N ]] = 0 , [[t∗Tα]] = 0 on Γc (34)

The principle of conservation of energy requires the influx of heat due to
conduction qhc from one side of the contact boundary to be equal and that of
the opposite side. Hence we can formulate the requirement [[q∗hc]] = 0 and with
(16) for the total heat flux

[[q∗ · n]] = −dfric on Γc (35)
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ż
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Figure 5: Time patch (left) and time-discretization error (right)

In each sub domain Ωs and Ωe a polynomial expansion σ∗
s = Pσ

s · aσ
s and

σ∗
e = Pσ

e ·aσ
e is performed for the complete stress tensor. In the same way the

expansion q∗
s = Pq

s · aq
s and q∗

e = Pq
e · aq

e of the complete heat flux vector is
given.
The unconstraint minimization problems for stresses and heat flux are

∫
Ωs

(τ h
s − τ ∗

s)
2 dΩ +

∫
Ωe

(τ h
e − τ ∗

e)
2 dΩ −→ MIN (36)

where the indices s and e denote values in the standard and the extended
patch, respectively. The continuity requirements (34) and (35) are enforced
by penalty functionals included in (36). This leads to an extended minimiza-
tion problem which yields two linear equation systems that are coupled in the
unknowns aσ

e , aσ
e and aq

e, aq
e, respectively.

Superconvergent patch recovery in time Within the patch of two time
steps Tn−1 ∪ Tn (see Fig. 5) we apply a linear polynomial expansion of the
improved time gradient ż∗:

ż∗(t) := pτ (t) · aτ mit pτ (t) = [ 1 , t ] (37)

The least square fit minimization
∫

Tn−1∪Tn

[ żh(t∗) − ż∗(t) ]2 dt → MIN (38)

with the superconvergent time-points

t∗1 =
1
2

[tn−1 + tn−2] bzw. t∗2 =
1
2

[tn + tn−1] .
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leads to the linear equation system
∫

Tn−1∪Tn

pτ ⊗ pτ dt · aτ =
∫

Tn−1∪Tn

pτ żh dt (39)

with its solution aτ .

2.5 Space-time adaptive strategy

As discussed before, we will state the adaptive method as a nonlinear optimiza-
tion problem: construct a spatial u-mesh or θ-mesh and a temporal z-mesh
such that the associated FEM-solutions satisfy

ηv =
||∇ev||2L2(Ωu)

||∇ev||2L2(Ωu) + ||∇vh||2L2(Ωv)

≤ ηTol
v (40)

where v stands for the displacement u, the temperature θ and the time variable
z. ηv is the relative error in the space time mesh and ηTol

v is a given tolerance.
Furthermore we require the space-time meshes to be optimal in the sense that
the element error is equally distributed between all nv

el elements in the specific
mesh. This yields to local predicted new element sizes

hv
new = hv

old

(
ēv

||∇ev||L2(ΩT )

) 1
p

(41)

where p is the polynomial order. The new mesh is generated by the advancing
front method, but also different techniques can be applied.

Note that we have to re-compute the time step Tn−1 if condition the error
indicator predicts a change in time step.

2.6 Numerical example

As an example we consider a rubber tire which is loaded by an internal pressure
pi and by a vertical force of 2Fv . For simplicity the tire is modelled without
the belt, bead apex core and rim flange. The material data of the tire and
the ground are stated in Table 1. The real contact situation on the rim flange
is replaced by a prescribed velocity v̄, which forces the tire to a tangential
movement. The rim flange and the lower end of the ground have a prescribed
relative temperature of ϑ̄ = 0K. All other boundaries with exception of the
contact zone are supposed to have adiabatic conditions.
After a phase of sticking the tire slides tangentially over the ground and is
heated due to frictional dissipation in the contact zone. At the end of the
sliding movement the tire shifts back elastically to its final position. The
path of movement is schematically depicted in Fig. 7. The adaptive algorithm
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Figure 6: Initial mesh and loads

Tire Ground
Bulk modulus K 333 N/mm2 3333 N/mm2

Shear modulus µ 35 N/mm2 3846 N/mm2

Thermal expansion α 0.1 · 10−3 K−1 0.1 · 10−4 K−1

Thermal conductivity k 0.2 N/sK 0.2 N/sK

Heat capacity cp 0.2 · 10−3 mm2/s2K 0.4 · 10−3 mm2/s2K

Density ρ0 1.0 · 10−9 Ns2/mm4 3.0 · 10−9 Ns2/mm4

Friction coefficient µ 0.4
Parameter hc0 150 N/sK

Hardness Hv 100 N/mm2

Parameter ε 1.5

Table 1: Material- and Interfacial Data

starts for the mechanical subproblem with a prescribed relative error tolerance
of η̄u := 15% at t = t1. The thermal sub-problem is solved not until t = t2 with
a given error tolerance of η̄θ := 15% since frictional heating is initiated not until
t = t2. Figures 8 and 9 depict the indicated relative error of both sub-solutions.
Once the prescribed tolerance is exceeded for one sub-problem a new adapted
mesh is generated. Exemplary some adapted meshes are depicted in Fig. 10.
We observe a significant grid condensation in both, the mechanical and thermal
mesh evolution, due to the complex solution gradient starting from the contact
area, see temperature field and effective heat flux q eff :=

√
qi qi in Fig. 11.

Nevertheless the global progressive mesh optimization for both subproblems
develops quite different, although the error tolerances are identical.
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Figure 7: Load-Path internal pressure and tangential movement
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