Recent developments in LS-DYNA

German LS-DYNA Forum 10/13/2011

Presented by John O. Hallquist

LSTC Livermore Software Technology Corp.

Outline of talk

- Introduction
 - Version 980
- Current Developments
 - LSTC dummy/barrier
 - Implicit update
 - Frequency domain
 - Isogeometric elements
 - LS-DYNA 971 R5 & R6
- Conclusions

LSTC Products

LS-DYNA Applications

Automotive

Crash and safety NVH Durability

×

Aerospace

Bird strike Containment Crash

Manufacturing Stamping

Forging

Consumer Products

Structural

Earthquake safety Concrete structures Homeland security

Electronics

Drop analysis Package analysis Thermal

Defense

Weapons design Blast response Penetration Underwater Shock Analysis

- Reduce customer costs to encourage and enable massively parallel processing for large scale numerical simulations
- Approaches used by LSTC to help reduce costs

 Expand analysis capabilities in all areas of physics to provide scalable, accurate, and robust solutions to the coupled multi-physics problems faced every day by development engineers worldwide

LS-DYNA One code strategy

Discrete Element Method

"Combine the multi-physics capabilities into one scalable code for solving highly nonlinear transient problems to enable the solution of coupled multiphysics and multi-stage problems"

6

Extensions in LS-DYNA 980

- EM solver involves an eddy-current approximation to the electromagnetics equations and couples to both the thermal and structural solvers.
- iCFD incompressible CFD solver handles low Mach number single and two-fluid flows; it also couples with both the structural and thermal solvers for FSI and conjugate heat transfer.
- CESE compressible CFD solver performs high-accuracy explicit space-time solutions to the Euler and Navier-Stokes equations, with coupling to a chemical reactions module and a stochastic particle capability for sprays and other applications. It also solves for FSI coupling.

Coupled mechanical/thermal/electromagnetic simulations

Incompressible CFD solver

Wind Turbine Simulation

- Horizontal wind turbine.
- Blade span: 44.5m.
- Wind speed: 11.4 m/sec.
- Rotation speed: 1.26 rad/sec.
- Fluid mesh: 15.2M tet elements
- Solid mesh: 67.4K tri shells.
- Parallel run: 20 CPUs.

LSTC Livermore Software Technology Corp.

Incompressible CFD solver

Free Surface Simulation

- The free surface is implemented using a Level Set.
- It allows the simulation of free surface flows using a single phase model.
- The Level Set allows large time steps with CFL=>1.

Incompressible CFD solver

Streamlines Visualization

- New feature in LSPP. Under the "Trace" button.
- It allows the user to easily identify fluid features.
- The example shows an FSI problem where the green dots are the source for the streamlines. The recirculation areas on the flag are shown.

Trace

Compressible CFD solver

Water Spray Jet (coupled to CESE)

Compressible CFD solver

Spray Particles Injected into a Supersonic flow (CESE)

Supersonic_cross_flow Time = 1.9685e-06, #nodes=9, #elem=0	Fringe Levels
Vector of Particle velocity	3.261e+01
min=32.4892, at node# 3 max=32.6123, at node# 9	3.261e+01 _
	3.260e+01 _
	3.259e+01
	3.259e+01
	3.258e+01
	3.258e+01
	3.257e+01
	3.256e+01
	3.256e+01
	3.255e+01
	3.254e+01
	3.254e+01
·王治学与指导生主体的学生的意志生活。我们的"自己的"和生活的"小学"的"And And And And And And And And And And	3.253e+01 _
	3.253e+01 _
	3.252e+01
	3.251e+01
	3.251e+01
	3.250e+01
	3.250e+01
	3.249e+01

Dummies

Dummies & barriers

- For licensed LS-DYNA users
 - No separate licensing from LS-DYNA.
- Continuous updates and support from LSTC and distributors
- Companies may improve models and keep the improvements proprietary
- Companies may redistribute their improved models to their suppliers and subsidiaries for LS-DYNA simulations
- Dummy development partners include DYNAmore, NCAC, a major automotive supplier, and several OEM's.

LSTC Hybrid III Adult Release Dates

LSTC Hybrid III Adult Element Count

LSTC Hybrid III Child Models

	Status	Next Steps	Release Date
3yr Old	Calibration tests	Calibration tests, Model clean-up, Documentation	November, 2011
6yr Old	Calibration tests	Calibration tests, Model clean-up, Documentation	October, 2011

LSTC Side Impact Dummies Release Dates

LSTC LegForm and Headform

LSTC Upcoming. Models

		Partner	Detailed	Status	Release Date
-	World SID		\checkmark	Model Assembly	Summer 2012
Å	Bio RID	Dynamore		Certification Testing	Dec, 2011
9	Q-series child dummies				TBD
	Flex PLI Flexible Pedestrian Legform Impactor				TBD
	THOR-NT		\checkmark	Meshing	TBD

LSTC Barrier Models Update

LSTC family of barriers

Solid barriers were sponsored by Honda USA Shell barriers were first pioneered by Toyota

Implicit Update

Implicit update

- MPP implicit and hybrid implicit are scaling to hundreds of processors.
- The global stiffness matrix, not an issue for explicit, is necessary for implicit
 - Processing time is dominated by the numeric factorization
 - Memory and disk storage is dominated by storing the factorization
- Memory management is very important.
- Symbolic Processing is the current bottleneck.
 - Improvements are being researched at LSTC

GPU Implementation for Implicit

- Advantage
 - Cheap, fast, and scalable with multiple CPU's
- Limitation
 - Less memory than CPU side
 - Communication between the CPU and GPU is slow
 - Currently Fortran does not port to the GPU.
 - GPU's hundreds of cores only work at the promised speed for specialized applications with carefully programmed software.
- Current implementation uses one GPU per processor, which will be automatically detected and applied without special licensing or pricing

GPU Performance in Implicit

- Test Environment
 - PC with a dual quad core Xeon 5560 processors and 2 Nvidia Tesla boards. The host has 96 Gbytes of memory while each GPU has 2 Gbytes of memory.
- Benchmark problem: AWE 1M nodes

No. of MPI Ranks	Factor WCT w/out GPU	Factor WCT w/ GPU	Elapsed WCT w/out GPU	Elapsed WCT w/ GPU
1	10111	2885	25359	9163
2	9682	2251	23986	8387

Frequency Domain Developments

Frequency domain analysis

- Random vibration
- Random fatigue
- Frequency response function
- Steady state dynamics
- Response spectrum analysis
- BEM Acoustics
- FEM Acoustics

Applications

- NVH of automotive and air plane
- Golf club design
- Defense industry
- Fatigue of mechanical structures
- Civil Engineering

BEM acoustics

- Keyword
 - *FREQUENCY_DOMAIN_ACOUSTIC_BEM
- A wide choice of methods
 - Rayleigh method
 - Kirchhoff method
 - Indirect variational BEM
 - Collocation BEM
 - Dual BEM with Burton-Miller formulation
- Boundary conditions given by
 - Direct load curve input
 - Time domain dynamic analysis followed by FFT conversion
 - Frequency domain steady state dynamic analysis
- Acoustic panel contribution analysis

BEM acoustics

FEM acoustics

- Keyword

 *FREQUENCY_DOMAIN_ACOUSTIC_FEM
- Solve interior acoustic problem
- Tetrahedron and Hexahedron elements are available
- Very fast since only 1 unknown at each node

A simplified compartment example

33

New database files

• Keyword

- *DATABASE_FREQUENCY_BINARY_OPTION

Available options

D3ACS, D3FTG, D3PSD, D3RMS, D3SPCM and D3SSD

Card 1	1	2	3	4	5	6	7	8
Variable	BINARY							
Туре	Ι							
Default	1							

Card 2	1	2	3	4	5	6	7	8
Variable	FMIN	FMAX	NFREQ	FSPACE	LCFREQ			
Туре	F	F	Ι	Ι	Ι			
Default	0.0	0.0	0	0	0			

Isogeometric analysis

NURBS-based finite elements

- ISOGEOMETRIC-Analysis
 - research since 2003
 - many promising features (CAD-to-FEA, accuracy, ...)
- GENERALIZED-Elements in LS-DYNA (User defined)
 - possible to try different shape functions ...
 - good results (accuracy, ...)
 - difficult to use, huge input-decks with lots of data a slow to read ...
- Decision to implement NURBS-based finite elements in LS-DYNA
 - NURBS: most widely used geometric description
 - first step into ISOGEOMETRIC-Analysis
- Very first implementations ...
 - 2D-NURBS for shell analysis
 - Boundary conditions (contact) with interpolation nodes/elements

Present Capabilities in LS-Dyna

- n New Keyword: *ELEMENT_NURBS_PATCH_2D
 - definition of NURBS-surfaces
 - 4 different shell formulations with/without rotational degrees-of-freedom
- n Preprocessing
 - work in progress for LS-PrePost ... current status (lspp3.1beta)
 - **à** Visualization of 2D-NURBS-Patches
 - à import IGES-format and construct *ELEMENT_NURBS_PATCH_2D
 - à Modification of 2D-NURBS geometry
- n Postprocessing and boundary conditions (i.e. contact) currently with
 - Interpolation nodes
 - Interpolation elements
- n Analysis capabilities
 - implicit and explicit time integration
 - eigenvalue analysis
 - other capabilities (e.g. geometric stiffness for buckling) implemented but not yet tested
- n LS-DYNA material library available (including umats)

NURBS-based finite elements

Summary & Future Directions

- NURBS based elements are stable
- Code optimization necessary to make it faster but already competitive. MPP enabled.
- Perform a lot more studies in different fields à experience
- Encourage customers to test these elements
- **n** Further implementation
 - (selective) mass scaling
 - thickness update of shells
 - use NURBS for contact (instead of interpolation elements)
 - make pre- and post-processing more user-friendly
 - introduce 3D NURBS elements
 - ... much more

LS971R5 & R6

*ELEMENT_SHELL_COMPOSITE *ELEMENT_TSHELL_COMPOSITE

- To define elements for a general composite shell part where the shells within the part can have an arbitrary number of layers
- The material ID, thickness, and material angle are specified for the thickness integration points for each shell in the part

Node-to-node contact for SPH

*DEFINE_SPH_TO_SPH_COUPLING to define penalty-based SPHto-SPH particle contact

impact 6.18 km/s alu/alu

Time = 0

Hybrid element couples SPH to solid

*DEFINE_ADAPTIVE_SOLID_TO_SPH

ICPL=1 creates hybrid elements as transit layers between SPH elements and Solid elements. Solid elements constrain SPH nodal locations. SPH elements provide "penalty force" against solid nodal motion.

Adaptive solid to SPH

*DEFINE_ADAPTIVE_SOLID_TO_SPH

The SPH particles replacing the failed element inherit all of the properties of failed solid element, e.g. mass, kinematic variables, and constitutive properties. Hybrid transition elements are automatically created.

SPH thermal

- A new explicit thermal conduction solver is implemented for SPH analysis
- Following keywords are supported
 *INITIAL_TEMPERATURE_OPTION
 *BOUNDARY_TEMPERATURE_OPTION
 *BOUNDARY_FLUX_OPTION
- Thermal coupling with SPH is implemented

SPH thermal conduction

*INITIAL_TEMPERATURE_*OPTION*

Lagrangian thermal solver time step $Dt = mDl^2 rc/k$ m = 1/12

FE vs SPH - Pure thermal conduction Time - 0

Cime = 0				Fringe Levels
Contours of Temperature				1.000e+02 _
max=100, at node# 3485				9.000e+01 _ 8.000e+01 _
				7.000e+01 _
96 96 96 96 97 97 98 98 98 98 98 98 98 98 98 98 98 98 98	0 00 00 00 01 00 00 00 01 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	20 20 00 10 10 00 00 10 10 10 00 00 00 00 00	ana an COOCTON
		15 55 54 55 54 55 54 55<		
				8 96 90 40 40 40 40 10 10 10 10 10 10 40 40 40 40 40 40 40 40 40 40 40 40 40
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25 50 56 56 56 56 56 56 56 56 56 56 56 56 56	
90 90 90 91 91 90 90 90 91 91 91 90 90 90 90 90 90 90 90 90 90 90 90 90	- 19 19 19 19 19 19 19 19 19 19 19 19 19			

explicit SPH thermal solver time step: $Dt = zr c_v h^2 / k$ z = .1 Ľ,

Boundary_temperature

*BOUNDARY_TEMPERATURE_OPTION

Solids

SPH

Ľ.

Boundary_temperature

*BOUNDARY_FLUX_*OPTION*

Solids

vector(left hand rule)

Thermal coupling with SPH

Control_thermal_solver: (eqheat)(fwork)w = rcDTConversion of mechanical work to heat

3D SPH thermo-mechanical impact Time = 0 Contours of Temperature min=0, at node# 3001 mass=0, at node# 3001

Fringe Levels
0.000e+00
00

*Mat_rigid_discrete or *Mat_220

- A single rigid material is defined which contains multiple disjoint pieces.
- Each rigid piece can contain an arbitrary number of solid elements that are arranged in an arbitrary shape.
- reduction in memory and wall clock time over separate rigid bodies
- Can be used to model granular material

*Element_discrete_sphere

- For cases where the particles can be modeled with geometric shapes, meshing of particles are not needed for solving contact and analytical contact can be used.
- Speed is considerably faster than with arbitrarily shaped particles and general single surface contact
- Spherical particles with arbitrary radii have been implemented for
 - •Elastic impact
 - Inelastic impact
 - •Combination of elastic and inelastic impacts

Mixer 9.6L (kg-m-s) Time = 0

*Element_discrete_sphere

CPU time and porosity comparison between DES and discrete elements based on Mat_220 and Mat_20

0.399

DE sphere

*Element_discrete_sphere

Effects of viscosity on the mechanical response of a liquid bridge is considered.

Discrete element sphere particle filling algorithm

- Linear Packing Speed ~8,500 sphere/second, single CPU, including sphere regularization
- Packing Density: ~56.7%
- Direct implemention into LS-PrePost and generate the LS-DYNA keyword input

Discrete element sphere particle filling algorithm

Bounding Surfaces and Triangulation

Particle filling algorithm

Phase III: Filling the volume

Mesh refinement along a curve

- DEFINE_CURVE_TRIM_NEW
 - Used together with *CONTROL_ADAPTIVE_CURVE

- Purpose
 - Refine elements along curve
 - No further refinement in later simulation
 - Flanging and hemming simulating become more efficient

Mesh refinement along a curve

NUMISHEET'02 Fender along hood line

Linear implicit with adaptivity

- Adaptive meshing allows stress concentrations to be automatically resolved in linear static calculations.
- Implementation in LS-DYNA :
 - If 4 levels of adaptive remeshing are specified, then 4 load steps are performed holding the load constant. Error norms are computed each step to determine which elements are refined.
 - Super-convergent Patch Recovery, SPR, is now the default for error estimate

Time = 0, #nodes=708, #elem=625 Contours of Effective Stress (v-m) max ipt. value min=0, at elem# 1 max=0, at elem# 1

Fringe Levels

1.450e+04

1.500e+04

1.400e+04

1.350e+04

Linear adaptivity

- Superconvergence Patch Recovery (SPR) has been extended for shells and plates.
- The element-centered element patch is used for the SPR with the weighted lease square, to support Tjoints and feature lines natively.
- Support various error estimators, within the element, including the energy norm, maximum tension or shear, von Mises stress, etc.
- All error estimation procedures are carried out locally, which is MPP friendly.

*ELEMENT_BEAM_PULLEY

- Seneral framework for pulley mechanism: rope / cable / belt / chain runs over a wheel → beam elements run over pulley node
- **§** Adpoted from slipring mechanism for belts
- **§** Available for **truss beam elements**

S Available for *MAT_ELASTIC and *MAT_MUSCLE, more materials could be implemented

*ELEMENT_BEAM_PULLEY

- **§** Smooth transition of beam material from one side to the other
- **§** Swapping of beam elements if elements get too short
- **§** Static and dynamic friction coefficients can be defined

Simplified Table Definitions

*DEFINE_TABLE_2D

Unlike the *DEFINE_TABLE keyword, a curve ID is specified for each abscissa value defined in the table. The same curve ID to be referenced by multiple tables, and the curves may be defined anywhere in the input

file.

*DEFINE_TABLE_3D

A table ID is specified for each abscissa value defined for the 3d table

*Define_table_3d

Consider a thermal material model. For each temperature, T, we have a table of hardening curves of stress versus strain at 3 strain $e^{i\theta}$ rates, i.e, s = f(i, j, T)

*DEFINE_TABLE_{2,3}D Example

*MAT_ADD_EROSION

§ New failure criteria added

EPSEFF – Effective in-plane strain for cohesive elements LCFLD – Forming Limit Diagram curve for shell elements EPSTHIN – Thinning strain to failure for shell elements

§ New GISSMO features added

LCSDG – Failure as function of triaxiality and Lode parameter

LCSRS – Failure as function of plastic strain rate

SHRF, BIAXF – Reduction factors for regularization

*Mat_kinematic_hardening_barlat89 (Mat_226)

Background

- Yoshida's non-linear kinematic hardening has been found to be very important for high-strength steel and aluminum
- Mat_125 (Yoshida's hardening + Hill's yield surface)
 - Is suitable for many high strength steels
 - Needs improvement for aluminum
- Barlat 89 yield surface is more suitable for aluminum
 - It is natural to combine Barlat89 yield surface with Yoshida's non-linear kinematic hardening

*Mat_kinematic_hardening_barlat89 (Mat 226)

- M125 and M226 give similar predictions of thickness changes
 - <u>NUMISHEET'05 Xmbr AL5182</u>

*Mat_kinematic_hardening_barlat89 (Mat_226)

M226 gives the best springback prediction <u>– AL5182</u>

*MAT_HILL_90

§ New material model for forming simulations, e.g. aluminum

Supports all options of widely used *MAT_3-PARAMETER_BARLAT

*MAT_RHT (*MAT_272)

• Based on works of Riedel, Hiermaier and Thoma

Concrete model featuring

- Pore crush
- Meridian dependence
- Strain rate effects
- Three curve formulation
 - Yield surface
 - Failure surface
 - Residual surface

Contact detonation

- Cross sectional view of concrete block after subjected to close range detonation
- Damage fringed and compared with experiment

Heat treatment in materials 36 & 133

- Yield stress reduced but hardening increased
- Enhanced formability

Mullins effect in *MAT_077

- For modelling hysteresis in rubber
- Hysteresis controlled via a table *D* giving damage as function of current and peak elastic energy

$$\mathbf{S} = D(W_{\text{dev}}, \overline{W}_{\text{dev}}) \frac{\P W_{\text{dev}}}{\P \mathbf{E}} + \frac{\P W_{\text{vol}}}{\P \mathbf{E}}$$

- Damage table determined from cyclic compression tests
- Used for accurate estimation of HIC value in pedestrian impact

Eight-chain rubber model (*MAT_267)

- A new advanced rubber model is available in LS-DYNA R6.
- Based on the standard (*mat_127) model but enhaced with the following features:
 - For solids and explicit simulations only.
 - Includes general Hill plasticity, Kinematic hardening, Viscoplasticity (4 types), Visco-elasticity (2 types) and Mullin's effect (2 types).

*CONSTRAINED_SPR3

(or *CONSTRAINED_INTERPOLATION_SPOTWELD)

- S Visualization by beam elements
- Soutput to SWFORC will be implemented soon

*CONSTRAINED_SPR3

- **§** Two shell element meshes are connected via a constrained model
- Free node between both parts defines center of the connection
- Shell nodes inside domain of influence (e.g. spotweld radius) are involved
- Relative deformation between
 both parts through interpolation
- S Plasticity-damage model with failure
- § Forces and moments distributed to corresponding shell nodes

One step solution

- Keyword: *CONTROL_FORMING_ONE_STEP
- Purpose:
 - For forming simulations:
 - Determine initial blank size
 - In the feasibility phase, approximately predict the formability
 - For crash simulations:
 - It can provide approximate thickness and plastic strain distributions to improve simulation accuracy
- Characteristics of the one-step solver:
 - Triangular and quadrilateral shell elements are supported
 - Complex parts are handled,
 - including parts with under-cuts
 - Friction and drawbead definitions are considered

One step solution

Initial Blank Size Prediction

Porosity leakage for non-fabric

*MAT_ADD_AIRBAG_POROSITY_LEAKAGE

Variable MID FLC/X2 FAC/X3 ELA FVOPT X0 X1

- Allows users to model porosity leakage through non-fabric material when such material is used as part of control volume
- Applies to both airbag_hybrid and airbag_Wang_Nefske
- Application includes pyrotechnic device design, where non-fabric material is used to model a control volume and leakage through area-dependent leakage has to be considered.
 Application includes pyrotechnic device design, material

*Set_xxxx_intersect

- Define a set as the intersection, ∩, of a series of specified sets. The new set, SID, contains the common elements of all named sets.
- Applies to:
 - *SET_BEAM
 - *SET_NODE
 - *SET_SEGMENT
 - *SET_SHELL
 - *SET_SOLID

*New element formulation for implicit analysis of rubber-like materials

Meshfree - enriched finite element formulation

- A purely displacement-based finite element formulation.
- Enriched with a meshfree node in tetrahedral element.
- Easy to be incorporated with existing finite element model Volumetric locking-free

Isoparametric mapping in the 5noded meshfree-enriched tetrahedral element

Wu, C. T. and Hu, W. (2011), "Meshfree-enriched Simplex Elements with Strain Smoothing for the Finite Element Analysis of Compressible and Nearly Incompressible Solids", <u>Computer Methods in Applied Mechanics and Engineering</u>, Vol. 200, pp. 2991-3010.

*New element formulation for implicit analysis of rubber-like materials

*SECTION_SOLID

Variable	SECID	ELFORM	
Туре		l	

ELFORM EQ.43: meshfree-enriched finite element formulation

Large deformation analysis of microscopic particle-reinforced rubber compound

Cosserat point hexahedron

- Brick element using Cosserat Point Theory
- Implemented as solid element type 1 with hourglass type 10
- Hourglass is based on a total strain formulation
- Hourglass constitutive coefficients determined to get correct results for
 - Coupled bending and torsion
 - High order hourglass deformation
 - Skewed elements

Cosserat point hexahedron

- Tip loaded cantilever beam
 - 5 mesh size levels (H=10, 5, 3.33, 2.5, 2 mm)
 - 3 distortion levels (a=-20, 0, 20 mm)
 - 2 load cases (horizontal (H) and vertical (V))
- Analytical tip displacement 0.21310 mm

Cosserat point hexahedron

Cosserat	Belytschko-Bindeman	Puso
1.7%	61.8%	24.8%
0.8%	46.8%	14.7%
0.6%	40.0%	14.5%
0.3%	39.8%	9.2%
0.2%	33.9%	8.5%
0.2%	27.0%	6.2%
0.1%	24.6%	5.3%
0.1%	22.3%	3.6%
0.1%	19.0%	0.9%
0.1%	15.4%	0.3%

• Worst errors for three hourglass formulations

Single point pentahedron

- Implemented as element type 115
- Supports Flanagan-Belytschko viscous and stiffness hourglass types
- Presumably more robust than the 2 point integrated pentahedron element
- Degenerated single point hexahedron elements are sorted to type 115
- Supported for implicit calculations

Seat impact

Robustness enhanced when pentahedron elements (depicted in brown) are run with element type 115 compared to element type 15

Miscellaneous

- Selective mass scaling now supports
 - Geometric rigid walls
 - Constraint based contacts
- Hardening laws implemented in materials 36 and 133
 - Gosh and Hocket-Sherby hardening
 - TRansformation Induced Plasticity (TRIP) hardening
 - Young's modulus as function of plastic strain in material 133
- Mortar contact supports
 - Initial penetration check
 - Ignore option
 - Proper edge to edge contact, edges treated as flat surfaces

ALE

Recent developments

- Modified *EOS_JWL to get correct cavitation effect
- Variable FSI friction based on relative interface velocity
- Implemented in 2D and 3D
 - ALE static adaptive
 - ALE dynamic adaptive

Variable FSI Friction

*CONSTRAINED_LAGRANGE_IN_SOLID							
SLAVE	MASTER	SSTYP	MSTYP	NQUAD	CTYPE	DIREC	MCOUP
		PFAC	FRIC	FRCMIN	NORM	NORMTY P	
			ILEAK	PLEAK			

- Friction coefficient being a function of relative velocity and pressure.
- FRIC= -N: N the table ID
 - Abscissa: Pressure
 - Ordinate: A load curve ID specifies relative velocity versus friction coefficient.

Variable FSI Friction *Courtesy of Shoji Oida, Bridgestone

Variable FSI Friction *Courtesy of Shoji Oida, Bridgestone

Fig. 2.19 Flow patterns and bow wave under the action of a driven roller in sand.

Ref: Theory of Ground Vehicle, 3rd ed., J. Y. Wong, 2001

 V_x

*ALE_REFINE

Variable	SID	STYPE	MMSID	NLVL
Туре	I	I	I	I

VARIABLE	DESCRIPTION
SID	Set ID. Id of a set defined by SETTYP
STYPE	Set type:
	ALE part set/ALE part/Part set coupled to ALE/ etc.
MMSID	Multi-Material Group Set Id
	GT.0: Refine ALE cells having at least one of the ALE MMG
	LT.0: Refine ALE cells only having mix of the ALE MMG
NLVL	Number of levels of refinement
	NLVL = 1

*ALE_REFINE Application: Underwater explosion

<u>Original mesh</u>: 11 min. 16 sec. History pressure in h2528

*ALE_REFINE Catch better pressure front

Globally refined mesh: 53 min. 04 sec.

LSTC Vernore Software Technology Corp. History pressure in h23717

Locally refined mesh: 15 min. 52 sec. History pressure in h6325

*ALE_REFINE

Time

ALE dynamic adaptive

*ALE_REFINE

Purpose: The 2nd line allows to dynamically refine the ALE mesh

Variable	SID	STYPE	MMSID	NLVL
Туре	I	I	I	I
Variable	NELEM	FREQ	CRITERIA	VALUE
Туре	l	I	I	F

VARIABLE	DESCRIPTION
NELEM	Number of ALE elements to refine
FREQ	Number of cycles between each refinements
CRITERIA	Criteria type for the refinement:
	EQ.1 : Pressure
	EQ.2 : Divergence of velocity
	EQ.3 : Volume fraction

ALE dynamic adaptive

*ALE_REFINE

Every cycle dynamically refine 300 ALE cells that:

- 1) coupled to the structure
- 2) mixed with air and water
- 3) volume fractions > 0.0

Performance issue using null shells to cover vent holes

SProblem

Single layer to ensure the flatness around vents

- Those elements will stretch a lot from their original geometry
- Bucket sort region size will increase by L^3 for correct searching

A multi-step bucketsort algorithm is implemented in the latest R5.1.1 and development code

Time

Implemented a new bucket sort algorithm to improve the performance – Please download the latest exe from beta site

Conclusions: Summary

- LSTC is working to be the leader in cost effective large scale numerical simulations
 - LSTC is providing dummy, barrier, and head form models to reduce customer costs.
 - LS-PrePost, LS-Opt, and LS-TaSC are continuously improving and gaining more usage within the LS-DYNA user community
 - LSTC is actively working on seamless multistage simulations in automotive crashworthiness, manufacturing, and aerospace
- The scalable implicit solver is quickly gaining market acceptance for linear/nonlinear implicit calculations and simulations
 - Robustness, speed, accuracy, and scalability have rapidly improved
 - New developments:
 - Combined implicit and explicit running together
 - Linear analysis combined with h-adaptivity

Conclusions: future

- LSTC is not content with what has been achieved
- New features and algorithms will be continuously implemented to handle new challenges and applications
 - Electromagnetics,
 - Acoustics,
 - Compressible and incompressible fluids
 - Isogeometric elements will be available soon
 - Discrete element methodology for modeling granular materials
 - Simulation based airbag folding and THUMS dummy positioning underway
- Multiscale capabilities are under development
 - Implementation underway (New approach which is more user friendly)
- Hybrid MPI/OPENMP developments are showing significant advantages at high number of processors for both explicit and implicit solutions

JUNE 03 - 05, 2012 at the Hyatt Regency Dearborn, Detroit, MI 12th Int'l LS-DYNA Users Conference www.ls-dynaconferences.com

www.ls-dynaconferences.com

First Call For Papers Submit Abstracts to:

papers@lstc.com

Details on:

LS-DYNAConferences.com

