
5. LS-DYNA Anwenderforum, Ulm 2006

© 2006 Copyright by DYNAmore GmbH

SCRIPTO

A New Tool for Customizing LS-PREPOST

R. Chen

LSTC

LS - PREPOST SCRIPTO Workshop

M - I - 1

5. LS-DYNA Anwenderforum, Ulm 2006

© 2006 Copyright by DYNAmore GmbH

SCRIPTO

A New Tool
for

Customizing LS-PREPOST

LSTC

October 13, 2006

OverviewOverview

• Why Bother Customizing?
• SCRIPTO
• C-Parser
• Events
• The Scripting APIs
• The Entry Points
• Documents and Users Group
• Looking Ahead
• Demos, Q & A

Why Bother Customizing ?Why Bother Customizing ?

• LS-PREPOST is a general purpose pre- and
post- processor that provides extensive
functionality for all LS-DYNA users to prepare
and manipulate their models.

• Yet, the development team still receives the
critics as most of the general purpose pre- and
post- processors would get:
– Steep learning curve

– Scattered functionality

Why Bother Customizing ?Why Bother Customizing ?

• A Call for a tool that may
– Flatten the learning curve by redesigning look

and feel of the application, so that new users
can break in easier

– Regroup the needed functionality so that
users does not need to navigate through
multiple steps to get things done.

– Allow users to refocus back to their problem
domains, and eventually leverage the
productivity.

Why Bother Customizing ?Why Bother Customizing ?

• SCRIPTO is the tool designed to have the script
developers participated in the customizing
process.

• Through SCRIPTO, users may
– Redesign and re-implement the user interfaces.

– Regroup and reorganize the existed functionality in
the way users want.

– Easily plug in a new functionality implemented by a
third party or the users themselves to manipulate the
model.

SCRIPTOSCRIPTO –– Behind the SceneBehind the Scene

• Interactive Model

•User Interface interactions

•Command scripts

•Macros

LSLS--PREPOSTPREPOST
•Functionality provider
•Information organizer

•Animations

•Fringe plots

•XY-plots

•Model entities

•Keyword files

UsersUsers
Information inquirer

SCRIPTOSCRIPTO –– Behind the SceneBehind the Scene
• Customized Interactive Model

LSLS--PREPOSTPREPOST
•Functionality participator
•Information provider

UsersUsers
•Information inquirer
•Functionality participator

•UI interactions

•Command scripts

• Macros

•SCRIPTO scripts

•Animations
•Fringe plots
•XY-plots
•Model entities
•Keyword files

SCRIPTOSCRIPTO

•User interface design

• data manipulation.

SCRIPTOSCRIPTO –– What Is ItWhat Is It

• SCRIPTO (SCRIPT-ing O-bjects)
– Builds on an in-house script parser, C-Parser,

that incorporates most of the C language
syntax.

– Is native after interpreted/compiled by C-
Parser. Once parsed, the interfaces
generated and functionality plugged become
part of LS-PREPOST.

LS - PREPOST SCRIPTO Workshop

M - I - 2

5. LS-DYNA Anwenderforum, Ulm 2006

© 2006 Copyright by DYNAmore GmbH

SCRIPTOSCRIPTO –– What Is ItWhat Is It

• SCRIPTO (continued)
– Has application programming interfaces

(APIs) that open to all users. It is now over
270 functions provided by SCRIPTO.

– APIs Can be categorized into 3 different areas
base on the functionality they provide

• User Interface APIs

• Model Data APIs

• Utility APIs

SCRIPTOSCRIPTO –– What Is ItWhat Is It

• SCRIPTO (continued)
– Can be developed into modules. Script

modules can be reused, included and shared.

– Is supported after LS-PREPOST 2.1 both on
Microsoft windows and most Linux* platforms.

*only on wx builds.

SCRIPTOSCRIPTO –– What Is In ItWhat Is In It

• User interface APIs
– There are 17 different

classes of user
interface supported in
SCRIPTO

PushButton ListBox

ToggleButton Menu

RadioBox Tree

TextField Tab

ScrolledText Dialog

Form Spin*

Slider MultiColumnList*

Separator Grid*

Label

SCRIPTOSCRIPTO –– What Is In ItWhat Is In It

• Model data APIs
– Allow you to interface with the model data in

LS-PREPOST directly.

– Allow you to interface with more than one
model simultaneously through DataCenter
objects.

– Currently, only the APIs that handle pre-
processing data are implemented.

SCRIPTOSCRIPTO –– What Is In ItWhat Is In It

• Model data APIs (continued)
– Can now generate the entities of

• Basic geometries (nodes, elements, and parts)
• Sets
• Define curves
• Coordinates
• Vectors
• SPCs
• Prescribed motions
• Initial velocities
• ASCII output controls

• Keywords may also be imported directly through
SCRIPTO functions. For those entities and controls that
is currently not implemented, script develop can import
them to their models.

SCRIPTOSCRIPTO –– What Is In ItWhat Is In It

• Utility APIs
– Allow the script developers to take advantage

of the tools implemented by LS-PREPOST

• Currently utility APIs has the following
tools implemented

• Keyword forms

• General selection mechanism

• File Open/Save Dialog

How Can I Get There ?How Can I Get There ?

• Understand C-Parser

• Understand GUI programming concepts

• Understand Scripting APIs

CC--ParserParser –– The LanguageThe Language

• C-Parser
– Is a script parser. It is developed and

maintained by Dr. Trent Eggleston.*

– has been linked to LS-DYNA, LS-OPT and
now LS-PREPOST.

– is more than an interpreter. C-Parser
compiles all the subroutines defined by script
developers. C-Parser is a half-interpreted and
half-compiled parser.

*Dr. Trent Eggleston is an employee of LSTC

LS - PREPOST SCRIPTO Workshop

M - I - 3

5. LS-DYNA Anwenderforum, Ulm 2006

© 2006 Copyright by DYNAmore GmbH

CC--ParserParser –– The LanguageThe Language

• C-Parser (continued)
– has a very flat learning curve for users who

know C-language.

– Follows most of the standards of C-Language.
• It uses similar lexical conventions, tokens,

operators, keywords as C-Language does.

• It comes with predefined functions and data
structures that provide same functionality as
standard C libraries.

CC--ParserParser –– The LanguageThe Language

• C-Parser (continued)
– Allows scripts to

• Do mathematical expressions evaluation

• Execute statements conditionally

• Iterate (Loop) through statements

• Define function calls

• Create user-defined data types

• Use pointers and arrays

• Include each other

CC--ParserParser –– The LanguageThe Language
comments

Array initialization

Build-in C structure

Iteration statement, for-block

Expression statement

Condition execution, if-block

Formatted output

System access

Function call

Function prototype

Function definition

Main script

CC--ParserParser –– The LanguageThe Language

• Here is a list of differences between C-Parser and C-language.
– All variables are static

• Variables which are initialized, will not be re-initialized again in a defined
function.

j is initialized only at the
first call.

All successive calls will add the
current i into j and the result looks
like

0
1
3
6
10
15
21
28
36
45

CC--ParserParser –– The LanguageThe Language

• … differences (continued)
– A multi-dimensional array should be initialized as a single-

dimensional array.

Put all 24 real numbers
together as it is initialized
in a single dimensional
array

Put 24 real numbers in
a 8x3 fashion, this will
yield parsing errors.

CC--ParserParser –– The LanguageThe Language
• … Differences (continued)

– Condition statements
• switch…cases is not

supported
• Scripts have to use

if…else if…else
instead.

– Iteration statements
• do… while is not

supported
• Scripts have to use for-

loop or while-loop
instead.

No do..while or switch..cases
blocks allow in c-parser

Correct way is to use while and
if..else to implement the same script

CC--ParserParser –– The LanguageThe Language
• … Differences (continued)

– There are several operators missing in
C-Parser:

• Increment and decrement : ++, --
• Combined assignments: +=, -=, *=, /=, …
• Conditional operator: ?:

Neither prefix, nor postfix increment are allowed

So as compound assignments

And no conditional operator either.

CC--ParserParser –– The LanguageThe Language
• … Differences (continued)

– The semi-interpret nature makes functions called by main script
have to be defined first

Script starts from here.

•Left : ErrorError. Although sub()
has a prototype, the parser will
not know the definition until
main() has been executed.

•Right : OKOK.

LS - PREPOST SCRIPTO Workshop

M - I - 4

5. LS-DYNA Anwenderforum, Ulm 2006

© 2006 Copyright by DYNAmore GmbH

EventsEvents

• Most GUI applications, when running, is in
an idle state.

• GUI applications react only when users
activate it through input devices or when
the OS signals the user interfaces to
change their internal states.

• We call these incidences of activation and
signals - events.

EventsEvents

• In respond to an event, a GUI control can
provide a function for the OS to connect
them. Applications then participate in the
execution flow this way.

• We call these reacting functions, the
“Callback” functions for controls in
responding of the events.

EventsEvents
• In order to work with these

users interfaces, script
develops should implement
these callback functions.

• Callback functions are
assigned to the “on-” or
“when-” members during
the creation in SCRIPTO.

• LS-PREPOST calls these
functions when the event
happens.

• After the execution of these
functions, the execution
flow goes back to the OS
and wait for the next event.

UsersUsers

OSOS

UIsUIs

Callback?Callback?

define: f() {..}define: f() {..}

NoNo

Input devicesInput devices

EventsEvents

YesYes

EventsEvents

• These “on-” and “when-” members are
called the event members of the control.

• Not every type of UI control has event
members; yet, some of the UI controls
may have more than one event members.

• Script developers may choose to
implement none or all event members.

• Following is the member name of events
for each type of UI controls:

EventsEvents
Object Type Member Name (Event) The Callback function is …

PushButton .onactivate Called when a PushButton is clicked

RadioItem .onselect Called when a RadioItem is selected

ListBox .whenpicked Called when a different item has been selected

.whendoubleclicked Called when an item has been double-clicked

Tree .whenactivate Called when a different tree item has been selected

.whendoubleclicked Called when a tree item has been double-clicked

Tab .whenclicked Called when a page in the Tab is selected

Grid .whenselected Called when a grid cell is selected

ToggleButton .oncheck Called when a ToggleButton is checked

TextField .whenentered Called when the Textfield is in focus, and enter received

Slider .whendragged Called when the slider thumb is dragged

.whenchanged Called when the position of a slider thumb has changed.

Menu .whenpulldown Called when the menu has been pull down and a different
selection has made by the user

SpinBtnInfo .whenspinned Called when the spin buttons are clicked

Spin .whenentered Called when the TextField part of spin received enter

EventsEvents

• SCRIPTO allows two types of callbacks
– Command Series

– Script defined callout functions

EventsEvents

• Events handled through command series
– This option allows users to make customized

widgets acts like mini cfile playback in LS-
PREPOST

– There is no limit the numbers of commands
can be installed into a command series.

EventsEvents

• Events handled through callout function
– Only one function is allowed to connect to an event.

– User may assign an extra parameter to a callout
function.

.event = {“@function_name[, [@][#][$][%]data]”};

– The leading character tells SCRIPTO how to pass the
data to callout functions

• @ : data interpreted as a pointer

• # : data interpreted as an float

• $: data interpreted as an string

• % : data interpreted as an integer

LS - PREPOST SCRIPTO Workshop

M - I - 5

5. LS-DYNA Anwenderforum, Ulm 2006

© 2006 Copyright by DYNAmore GmbH

EventsEvents

• …Callout function: (continued)
– All callout functions have the same function prototype:

void co_function(DataField, CallStruct *);

• DataField :the extra parameter passed by users. Data
Field is a union of a Pointer, an Integer, and a Float.

• CallStruct * :the information provided by LS-PREPOST
about the UI control participated in the event. This pointer
must be converted to a derived CallStruct pointer before it
can be used.

EventsEvents
Object Type CallStruct * converted to

PushButton Not used

ToggleButton ToggleCallStruct *

RadioBox RadioCallStruct *

Slider SliderCallStruct *

Menu MenuCallStruct *

Spin SpinCallStruct *

ListBox ListCallStruct *

Tab TabCallStruct *

Tree TreeCallStruct *

Keyword* KeywordCallStruct *

The Scripting APIsThe Scripting APIs

• In order to utilize the functionality provided by LS-
PREPOST, different API functions ask for different
information from script developers.

• User Interface APIs
– Construction of a UI control
– Setting/Retrieving states of a UI control.
– Callback functions to an event occurrence.

• Model Data APIs
– Model to connect to
– Entity types to create and modify.
– Keywords to import

• Utility APIs
– Information an utility tool needed before you call.
– Information retrieving after a request is completed.

User Interface APIsUser Interface APIs

• Construction
– In general, UI APIs need following information to create an

UI control
• parent : every widget needs a parent to address where

they come from. There are 3 root parents
defined by SCRIPTO where the customization
starts.

• anchor : the real estate occupied by the widget.
• style : describes how a widget look like
• tag : the ‘face name’ of the widget
• help : a descriptive sentence that tells users how the

widget works.
• other info : other properties for the widget to be

created, and they are widget dependant.
• events : the event member of the widget, some widget

does not accept events, then they do not have
this field.

User Interface APIsUser Interface APIs
• The listing on the right gives the result

below.
• This short script demonstrates how style

member would change the look and feel
of an UI.

• SCRIPTO.pdf has the details of each
member for different UIs; developers
should take advantage of the information
when scripting for LS-PREPOST.

Model Data APIsModel Data APIs

• Here are the general guidelines for a script
to hook up a DataCenter:
– Declare a DataCenter

– Look up a model

– Import a model to the DataCenter

– Use manipulation functions to create entities
in the DataCenter

– Refresh the DataCenter

• Script to the right will create a

single solid element with unit
nodal coordinates.

Declare a DataCenter

Query for a model index

Import from the model

Create nodes, elements
and parts, (DataCenter
manipulation functions)

Refresh DataCenter

Utility APIsUtility APIs

• To use open/save file dialog Utility
– Declare an object FileDialogInfo

– Fill in the information needed by FileDialogInfo

– Assign an event function for the dialog.

– Call UtilFileDialog() functions

– Use GetLastFileName() to retrieve the file selected by
users.

• Once UtilFileDialog() is called, the execution will
not continue until user ‘ok’ or ‘cancel’ the action.

LS - PREPOST SCRIPTO Workshop

M - I - 6

5. LS-DYNA Anwenderforum, Ulm 2006

© 2006 Copyright by DYNAmore GmbH

Declare a FileDialogInfo

Primary filter

Allowed filters

Ok action

Call UtilFileDialog()

Since FileDialog is a modal dialog,
execution flow stop here, until user
responds.

Get the file name selected
by the user

More Model Data and Utility APIsMore Model Data and Utility APIs

• There are few other model data and utility
APIs, they all have been documented in
SCRIPTO.pdf file.

• There are still other model data and utility
APIs that yet to be implemented, so that
users interested in customization may take
advantage of them.

The Entry PointsThe Entry Points

• The signature
– Any script that is a lawful SCRIPTO script has to have a comment line

/*LS-SCRIPT[:script_name]*/
– LS-PREPOST will not read any script that does not have a SCRIPTO

signature.

– A signature can have an optional script name. A script name can be
up to 20 characters.

– Whenever a script is loaded, a default script name “nonamex” will be
given if user does not assign one.

• The verbose mode
– Default is on.

– User may turn off verbose setting on C-Parser, this will make LS-
PREPOST not report the errors/warnings found.

• On the right is a script
template.

• Scripts organized in this order
make debugging easier

Signature: mandatory

Function prototypes, and
global variables

Change path to the include files

Include files

Call main function

The main function: this is
optional. All statements are
assumed in the main, unless it
is defined in a define: function.

Other define: functions

The Entry PointsThe Entry Points

• There are 3 different globally defined root
widgets.

• They are FromRight, FromBottom, and
FromDialog
– FromRight: is a Form, with a default fraction of 100.
– FromBottom: is a Form, with a default fraction of 100.
– FromDialog: is a place holder, its value is not

important. All dialogs need to create from it.
• All widgets created by the script should have an

ancestor of one of the 3 root widgets
• Root widgets can not be destroyed by the

scripts.

&FromDialog

&FromRight

&FromBottom

The Entry PointsThe Entry Points

• Load a script
– A script can be named in any fashion as long

as the OS accepts.
– However the .sco file extension (.sco pronounced

as ‘dot sko’), are recognized by LS-PREPOST

LS-PREPOST will launch a script called “tr.sco” in the current
directory.

The Entry PointsThe Entry Points

• Load a Script (Continued)
– One may also load from the menu

• [Applications]->[Customize]

LS - PREPOST SCRIPTO Workshop

M - I - 7

5. LS-DYNA Anwenderforum, Ulm 2006

© 2006 Copyright by DYNAmore GmbH

The Entry PointsThe Entry Points

• In the “Open Script” dialog, load the script.

Enter or select a script file here
Browse a script file

Never mind, Load later.Load this script

The Entry PointsThe Entry Points

Script list, can be dropped down
and switch between scripts

Load a new script
Destroy current script

Include a script

Return to normal menu

Reload a script Preference settings

Documents and Users groupDocuments and Users group

• SCRIPTO.pdf
– Contains every API for SCRIPTO provides by

LS-PREPOST

– Contains also a syntax reference to C-Parser.

– You may download it from LSTC’s ftp site.

– This document will be updated as frequently
as further development of SCRIPTO goes.

Documents and Users groupDocuments and Users group

• There is a user’s group on Google. Users
are encouraged to join as a member to
discuss, exchange scripts.

http://groups.google.com/group/scripto

Looking AheadLooking Ahead

• SCRIPTO
– is a customization tool provides by LS-PREPOST to

all users to extend their experience with LS-
PREPOST.

– Gives users a means to better manipulate and
organize their models.

– Invites the users of LS-PREPOST to give it a new
look

– provides script developers the tool to impart their
knowledge to LS-PREPOST and make LS-PREPOST
from a one-size-fit-all general purpose pre- and post-
processor to a one-of-a-kind tailor-made application.

Looking AheadLooking Ahead

• SCRIPTO (continued)
– Is still improving. More functionality should be

added into the API functions
• Picking/Selecting mechanism

• Plotting mechanism

• More Entity Creation

• Post-processing capabilities

Warnings and RemindersWarnings and Reminders

• C-Parser is a powerful parser. System libraries it
provides give script developers handy tools to
develop their scripts. However, these function
may also raise some concern of the security to a
system whenever a script is loaded.

• Script developers and users are advised to read
all scripts from a third party before using it.

• LSTC will not be responsible for any loss or
damage caused by loading a SCRIPTO script.

LS - PREPOST SCRIPTO Workshop

M - I - 8

