5. LS-DYNA Anwenderforum, Ulm 2006 LS - PREPOST SCRIPTO Workshop

SCRIPTO

A New Tool for Customizing LS-PREPOST

R. Chen

LSTC

© 2006 Copyright by DYNAmMmore GmbH M-1-1

LS - PREPOST SCRIPTO Workshop

5. LS-DYNA Anwenderforum, Ulm 2006

SCRIPTO

A New Tool
for
Customizing LS-PREPOST

LsTC
October 13, 2006

Overview

* Why Bother Customizing?
* SCRIPTO

» C-Parser

* Events

The Scripting APIs

Entry Points

nts and Users Group

Why Bother Custo

* LS-PREPOST is a general purpose
post- processor that provides extensive
functionality for all LS-DYNA users to prepa

and manipulate their models.

Yet, the development team still receives the

itics as most of the general purpose pre- and

rocessors would get:

Why Bother Custo

A Call for a tool that may

— Flatten the learning curve by redesigni
and feel of the application, so that new us
can break in easier

— Regroup the needed functionality so that

users does not need to navigate through

Itiple steps to get things done.

sers to refocus back to their problem

and eventually leverage the

Why Bother Custo

* SCRIPTO is the tool designed to ha
developers participated in the customizi
process.

¢ Through SCRIPTO, users may

— Redesign and re-implement the user interfaces.

egroup and reorganize the existed functionality in

ug in a new functionality implemented by a
the users themselves to manipulate the

SCRIPTO — Behin

* Interactive Model

«User Interface interactions

+Command scripts

*Macros

+Animations

*Fringe plots

SCRIPTO — Behin

« Customized Interactive Model

*Animations
«Fringe plots
*XY-plots

*Model entities
*Keyword files

* Macros
*SCRIPTO scripts

«User interface design

data manipulation.

SCRIPTO — What

e SCRIPTO (SCRIPT-ing O-bjects

— Builds on an in-house script parser, C-
that incorporates most of the C language
syntax.

— Is native after interpreted/compiled by C-

arser. Once parsed, the interfaces

rated and functionality plugged become

M-1-2 © 2006 Copyright by DYNAmore GmbH

5. LS-DYNA Anwenderforum, Ulm 2006

LS - PREPOST SCRIPTO Workshop

SCRIPTO — What

* SCRIPTO (continued)

— Has application programming interface
(APIs) that open to all users. It is now over
270 functions provided by SCRIPTO.

— APIs Can be categorized into 3 different areas

se on the functionality they provide

SCRIPTO — What

* SCRIPTO (continued)
— Can be developed into modules. Script
modules can be reused, included and shar

— Is supported after LS-PREPOST 2.1 both on
Microsoft windows and most Linux* platforms.

*only on wx builds.

SCRIPTO — What

« User interface APIs ElEiiton
— There are 17 different ~ T°9g'eButton

classes of user RadioBox
interface supported in TextField Tab
RERIPTO ScrolledText Dialog

Form Spin*
Slider MultiColumnList*
Separator Grid*

Label

SCRIPTO — What

* Model data APIs

— Allow you to interface with the model d
LS-PREPOST directly.

— Allow you to interface with more than one

model simultaneously through DataCenter
bjects.

tly, only the APIs that handle pre-

ing data are implemented.

SCRIPTO — What

¢ Model data APIs (continued)
— Can now generate the entities of

« Basic geometries (nodes, elements, and parts)

* Sets

« Define curves

« Coordinates

« Vectors

* SPCs

+ Prescribed motions

Initial velocities
Cll output controls

ay also be imﬁoned directly through

tions. For those entities and controls that

implemented, script develop can import

SCRIPTO — What

« Utility APIs
— Allow the script developers to take adv:
of the tools implemented by LS-PREPOS!

¢ Currently utility APIs has the following
ols implemented

How Can | Get The

e Understand C-Parser
e Understand GUI programming conce
¢ Understand Scripting APIs

C-Parser — The La

* C-Parser
—Is a script parser. It is developed and
maintained by Dr. Trent Eggleston.*
— has been linked to LS-DYNA, LS-OPT and

now LS-PREPOST.

more than an interpreter. C-Parser

iles all the subroutines defined by script
rs. C-Parser is a half-interpreted and

“Dr. Trent Eggleston is an employee of LSTC

© 2006 Copyright by DYNAmMmore GmbH M-1-3

LS - PREPOST SCRIPTO Workshop

5. LS-DYNA Anwenderforum, Ulm 2006

C-Parser — The La

e C-Parser (continued)

— has a very flat learning curve for users
know C-language.

— Follows most of the standards of C-Language.
« It uses similar lexical conventions, tokens,
operators, keywords as C-Language does.

mes with predefined functions and data

es that provide same functionality as
libraries.

C-Parser — The La

e C-Parser (continued)

— Allows scripts to
+ Do mathematical expressions evaluation
« Execute statements conditionally
« lterate (Loop) through statements
Define function calls
ate user-defined data types

inters and arrays

C-Parser — The La

COMMENtS —, uy 5. semirTar
el Funci st
Function pmw!ype/ detine:
el mainivele}
i

i a:
I8t prisesjie) -
5
Array initialization: 3
A Ist 43
Build-in C structure ————> FILE =43 .

¥ = Fapen
o g -

: “Hhest nate .1

e

' FpeinteiF, =z nate =y + Condition execution, if-block

ion statement, for-block FRrAStFiF, “prine = B8, square - BT, } Formatted output
r—y prinesii], squaredilh;

(R
Function call

ehar denal48]:
speinticoens, “arime - 30 , sqeare - T,

[T
[

C-Parser — The La

« Here is a list of differences between C-Parser an
— All variables are static

. iables which are initiali will not be
function.

SOLE-SCRIPT o/
veid fumc{int);
detine:

jis initialized only at the wvald main{wnid) {
first call. It 13
1= 0

Al successive calls will add the i
rrent i into j and the result looks 4 o= dein
3
¥
define:

waid fumclink i) {
char BuF[78]3

sprintf(buf, “TWn", ji;
bk) ;

b
maini);

C-Parser — The La

« ... differences (continued)

— A multi-dimensional array should be initialized as
dimensional array.

Float ncoord[8][3] = {@.8, 8.8, l].l],‘
1.8, 8.0, 8.8,
1.8, 1.0, 8.9,
CECERICCEREECE Put all 24 real numbers
6.0, 0.8, 1.9, together as it is initialized
1.8, 6.8, 1.8, in a single dimensional
1.8, 1.8, 1.8, array
6.8, 1.8, 1.8};
Float ncoord[8][3] = { {98.8, 6.8, 8.0},
{1.9, 6.8, 8.0},
.8, 1.8, 8.8},
-8, 1.8, 0.8;, Put 24 real numbers in
-8, 8.9, 1.0}, a 8x3 fashion, this will
.8, 0.8, 1.0, yield parsing errors.
.8, 1.8, 1.0,
.8, 1.8, 1.8} };

C-Parser — The La

« ... Differences (continued) Int 41
— Condition statements char buf[20];
« switch...cases is not i
supported /-
« Scripts have to use ot

if...else if...else

Wt
e : sprintE{buf, " ") break;
instead. car : sprintE(uuE, D brean;
— lteration statements case 2 sprintf{buf, 3 break:
« do... while is not default : sprintf{buf, “error"}; break;

supported L.
cripts have to use for-) uhilegicay:
or while-loop)
B while{icay ¢
iftie=0
sprintfibuf, " ");
else 1F (i==1)
sprintfibuf, "0 ;
s iF (i==2)
sprintFiBuf, "Oet);
else
sprintfibuf, “ercor);
Lot

... Differences (

Int a;
Int b; — There are several
nt o -Parser:

* Increment and decremer
asm + Combined assignments: +=,
L « Conditional operator: ?:

oA s
b I bi Neither prefix, nor postfix increment are allowed
Ff € = ++a ® h;

a=ar1;
£ ea=h;
4 e e a w b So as
caceash;

char buf[20];

£ spriotfibuf, * Wdhn™, €32 T a : b);
1rcer) And o conditional operator either.
sprintfibuf, " A", a);

C-Parser — The La

« ... Differences (continued)

— The semi-interpret nature makes functions calle
have to be defined first

/#L§-SCRIPT*/ /*LS-SCRIPT=/
Int sub{Int, Int); Int sub{Int, Int);
define: define:
void main{uoid) { Script starts from here. void main{woid) {
Int a; Left : Error. Although sub() Int a;
Int b; has a prototype, the parser will Int b;
I c; e e
a- 20 “Right : OK. a - 26
b - 25; b = 25;
¢ = sub{a, b); c = sub{a, b);
¥ i
main{); define:
define: Int sub(Int a, Int b) { return a-b; }
Int sub(Int a, Int b) { return a-b; } nain(};

M-1-4 © 2006 Copyright by DYNAmore GmbH

5. LS-DYNA Anwenderforum, Ulm 2006

LS - PREPOST SCRIPTO Workshop

Events

» Most GUI applications, when run
an idle state.

» GUI applications react only when users

activate it through input devices or when

he OS signals the user interfaces to

ge their internal states.

hese incidences of activation and

Events

In respond to an event, a GUI co!
provide a function for the OS to conn
them. Applications then participate in the
execution flow this way.

e call these reacting functions, the
back” functions for controls in

ing of the events.

Events

« In order to work with these
users interfaces, script
develops should implement
these callback functions.

* Callback functions are

assigned to the “on-" or

“when-" members during

the creation in SCRIPTO. s

-PREPOST calls these

ions when the event

Input devices

define: f() {..}

Events

» These “on-" and “when-" membe
called the event members of the con

» Not every type of Ul control has event

members; yet, some of the Ul controls

may have more than one event members.

ipt developers may choose to

ent none or all event members.

is the member name of events

of Ul controls:

Events

Object Type | Member Name (Event) | The Callback function is ...
PushButton .onactivate Called when a PushButton is clicke:
T -oncheck Called when a T is checked
Radioltem .onselect Called when a Radioltem is selected
TextField Called when the Textfield is in focus, and enter recei
Slider .whendragged Called when the slider thumb is dragged
whenchanged Called when the position of a slider thumb has changed.
Menu -whenpulldown Called when the menu has been pull down and a different
selection has made by the user
Info i Called when the spin buttons are clicked
Called when the TextField part of spin received enter
Called when a different item has been selected
Called when an item has been double-clicked
ivate Called when a different tree item has been selected
icked Called when a tree item has been double-clicked
Called when a page in the Tab is selected
led when a grid cell is selected
Events

¢ SCRIPTO allows two types of cal

— Command Series
buttoni.onactivate = {"background 1.8 1.8 1.8,
“textcolor 8.6 8.8 8.8",
"labelcolor 6.8 8.8 8.8"};

— Script defined callout functions

popdlg.onactivate = {"@popdlgfn"};

define:
void popdlgfn{DataField df, CallStruct =cs) {

e Events handled through comman

— This option allows users to make custo
widgets acts like mini cfile playback in LS-
PREPOST

— There is no limit the numbers of commands
an be installed into a command series.

Events

» Events handled through callout functi
— Only one function is allowed to connect to an
— User may assign an extra parameter to a callout

function.

.event = {“@function_name][, [@][#][$][%]data]"};

— The leading character tells SCRIPTO how to pass the
ta to callout functions
: data interpreted as a pointer
: data interpreted as an float
: data interpreted as an string
ata interpreted as an integer

© 2006 Copyright by DYNAmMmore GmbH M-1-5

LS - PREPOST SCRIPTO Workshop

5. LS-DYNA Anwenderforum, Ulm 2006

Events

e ...Callout function: (continued)
— All callout functions have the same function

void co_function(DataField, CallStruct *);

« DataField :the extra parameter passed by users. Data
Field is a union of a Pointer, an Integer, and a Float.

Struct * :the information provided by LS-PREPOST
e Ul control participated in the event. This pointer
nverted to a derived CallStruct pointer before it

Events

Object Type CallStruct * converted to
PushButton Not used
ToggleButton ToggleCallStruct *
RadioBox RadioCallStruct *
Slider SliderCallStruct *

lenu MenuCallStruct *

SpinCallStruct *

ListCallStruct *

TabCallStruct *

TreeCallStruct *

KeywordCallStruct *

The Scripting APIs

« In order to utilize the functionality provide
PREPOST, different API functions ask for di
information from script developers.

* User Interface APIs

— Construction of a Ul control

— Setting/Retrieving states of a Ul control.

— Callback functions to an event occurrence.

ility tool needed before you call.
after a request is completed.

User Interface API

« Construction
— In general, Ul APIs need following information to cr
Ul control
* parent : every W|d?et needs a parent to address wh
they come from. There are 3 root parents
defined by SCRIPTO where the customization
starts.
: the real estate occupied by the widget.
: describes how a widget look like
: the ‘face name’ of the widget
: a descriptive sentence that tells users how the
widget works.
: other Jaropemes for the widget to be
created, and they are widget dependant.
: the event member of the widget, some widget
dqe% ;(;t accept events, then they do not have

User Interface API

The listing on the right gives the result /%LS-SCRIPT*/
below. Include("asxpm.xpm”);
+ This short scrg:t demonstrates how style PushButton abutton;
member would change the look and feel
of an Ul
* SCRIPTO.pdf has the details of each
member for different Uls; developers
should take advantage of the information
when scripting for LS-PREPOST.

abutton.parent = &FromRight;
abutton.anchor = {18, 5, 35, 15};
abutton.style = “PB_XPH";

abutton.help = “demonstrate a xpm button™;
abutton.pix = asxpm_spn ;

abutton.tag = “as_icon";
= 2l % &
a Createwidget(&abutton);

PushButton bbutton;

bbutton.anchor = {18, 15, 35, 28};
bbutton.tag = “A's";
bbutton.help = “demonstrate a normal button”;

bbutton.parent = &FromRight;
A's

Createtlidget(tbbutton);

Model Data APIs

e Here are the general guidelines
to hook up a DataCenter:

— Declare a DataCenter

— Look up a model

Import a model to the DataCenter

manipulation functions to create entities
ataCenter

DataCenter

Scrl?l to the right will create @~ #*L5-SCRIFT=/

single solid element with unit ataenter dei
nodal coordinates. Int smodel_fdus
nodel_ide = nal.n.rtn:umnuuruuhu 15
patalmportFron(tde, model idx
free(model_idx);
Declare a DataCenter 1oat ncosra[B][3] = {

Query for a model index

Import from the model

Fartinfo pi;
pi.dd = 13
pl.type = scETYPE_SOLID;
pl.title = “a solld part";
DatatveatePart{Bdc, Bpi);

ate nodes, elements.
(DataCenter nar.aurnumm-(nu: niofi].
'.0" functions) neeord[i][W], neoerd[i)[1]. neoord[i)(2]);

¥
n--nnnu CH

e nm-:[n = nia[i]:
pataGreateElement{tdc, 1, Bei};

DataReFreshi};

Utility APIs

« To use open/save file dialog Utility
— Declare an object FileDialogInfo

— Fill in the information needed by FileDialoginfo
— Assign an event function for the dialog.

— Call UtilFileDialog() functions

Use GetLastFileName() to retrieve the file selected by

ileDialog() is called, the execution will
ntil user ‘ok’ or ‘cancel’ the action.

M-1-6 © 2006 Copyright by DYNAmore GmbH

5. LS-DYNA Anwenderforum, Ulm 2006

LS - PREPOST SCRIPTO Workshop

/#LS-SCRIPT: filedialogtests/
Declare a FileDialoginfo
void fdok(DataField, CallStruct #);
define:
void main{void){ I
FileDialogInfo fdi;

fdi.parent = NULL;

fdi.title = "open a scripto file";
Primary filter ————————— fdi.init_filter = “Scripto File(x.sco)|*.sco";

fdi.filters = { “Binary Plot File (d3plotx)|d3plot+",
s —— “keyuord File (x.k;%.inf;x.key) |*.ksx.inf5x.key”,
. "Scripto File(*.sco)|*.sco"};
Okaction —————, fqi.ok_action = {"Gfdok"};

Call UtilFileDialog) ————— yti1Filedialog(&fdi);

1F(Fdi.pressed t= scOK)
jialog is a modal dialog, return; .
top here, until user Echo("select a file");

define:
void fdok(DataField df, CallStruct xcs) {
char snane;

name = UtilGetlastFileName();
Echo(name);

main();

More Model Data and

» There are few other model data an
APIs, they all have been documented in
SCRIPTO.pdf file.

» There are still other model data and utility

APlIs that yet to be implemented, so that

sers interested in customization may take
ntage of them.

The Entry Points

« The signature
— Any script that is a lawful SCRIPTO script has to have a commel
/*LS-SCRIPT[:script_name]*/
— LS-PREPOST will not read any script that does not have a SCRIPTO
signature.
— A signature can have an optional script name. A script name can be
up to 20 characters.
Whenever a script is loaded, a default script name “nonamex” will be
given if user does not assign one.

turn off verbose setting on C-Parser, this will make LS-
t report the errors/warnings found.

SLE-SCRIPT iscript_name_heres/

+ Onthe right is a script P
template. prototypes

+ Scripts organized in this order -

make debugging easier woid F1(DataField, CallStruct «);

wold (Z{Datafield, CallStruct =);

Signature: mandatory fan
» logistics

Function prototypes, and R A—

global variables ChangePathl"Vimy seriptsiied:

Change path to the include files L
= Includes
-t
Include]"a, kpn");
Inelude "b.xpn”);
Inelude] e upn"):

Include files
e

* main script
.

duline

in function: this is void maingvoid)
4

Fon
= ui creation, and sthers ..
-/

L
define:
wold F1{DIEaField aF, CallStruct scs} ¢ Je...o/ }
et ine:

vold F2{DataField dF, CallStruct scs} { /e...=/ }

maingy:

The Entry Points

* There are 3 different globally defined ro
widgets.

* They are FromRight, FromBottom, and

FromDialog

— FromRight: is a Form, with a default fraction of 100.

— FromBottom: is a Form, with a default fraction of 100.

— FromDialog: is a place holder, its value is not

important. All dialogs need to create from it.

idgets created by the script should have an

or of one of the 3 root widgets

ts can not be destroyed by the

&FromDialog

Vate Lot i ik i #rm | 050 v T 1o [rrosmhimeson

e o e et 0 Gt e s e o — e

e x|
bty

P

[> e e e e

Domplary et varw - 52

The Entry Points

e Load a script

— A script can be named in any fashion as lo
as the OS accepts.

— However the .sco file extension (.sco pronounced
as ‘dot sko’), are recognized by LS-PREPOST

will launch a script called “tr.sco” in the current

The Entry Points

e Load a Script (Continued)
— One may also load from the menu
« [Applications]->[Customize]
File Misc. Toggle Background Applications Settings Help

General

Forming

AirBag Folding
Occupant Position
Customize
MetalFormi k

© 2006 Copyright by DYNAmMmore GmbH M-I1-7

LS - PREPOST SCRIPTO Workshop

5. LS-DYNA Anwenderforum, Ulm 2006

The Entry Points

« In the “Open Script” dialog, loal

Enter or select a script file here

Browse a script file

7
|
|

Never mind, Load later.

The Entry Points

Destroy current script
Load a new script

SCRIPT_NAME - I M|

& \
e
opped down

ipts Return to normal menu

Preference settings

Documents and U

« SCRIPTO.pdf

— Contains every API for SCRIPTO provi
LS-PREPOST

— Contains also a syntax reference to C-Parser.
You may download it from LSTC's ftp site.

is document will be updated as frequently
er development of SCRIPTO goes.

Documents and U

» There is a user’s group on Goo!
are encouraged to join as a membe
discuss, exchange scripts.

:/lgroups.google.com/group/scripto

Looking Ahead

* SCRIPTO

— is a customization tool provides by LS-PR
all users to extend their experience with LS-
PREPOST.

— Gives users a means to better manipulate and

organize their models.

nvites the users of LS-PREPOST to give it a new

script developers the tool to impart their

to LS-PREPOST and make LS-PREPOST
ize-fit-all general purpose pre- and post-
e-of-a-kind tailor-made application.

Looking Ahead

* SCRIPTO (continued)
— Is still improving. More functionality sh
added into the API functions
« Picking/Selecting mechanism
* Plotting mechanism
More Entity Creation
t-processing capabilities

Warnings and Re

e C-Parser is a powerful parser. Syste
provides give script developers handy ti
develop their scripts. However, these functi
may also raise some concern of the security to
system whenever a script is loaded.

ipt developers and users are advised to read
ipts from a third party before using it.

ot be responsible for any loss or

by loading a SCRIPTO script.

M-1-8 © 2006 Copyright by DYNAmore GmbH

