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Abstract:

A realistic and reliable numerical simulation demands suitable computational models and applicable
data models for the structural design parameters. Structural design parameters are in general non-
deterministic. The choice of an appropriate uncertainty model for describing selected structural design
parameters depends on the characteristics of the available information. Besides the most often used
probabilistic models and the stochastic analysis techniques newer uncertainty models have been de-
veloped that offer the chance to take account of non-stochastic uncertainty that frequently appears in
engineering problems. In this paper a crash analysis example with uncertain structural parameters is
presented. The uncertainty quantification is realized with aid of the uncertainty models randomness and
fuzziness. The quantified uncertain structural parameters are introduced into their respective analysis al-
gorithms: the stochastic structural analysis and the fuzzy structural analysis. Specifies and advantages
of the uncertainty models fuzziness and randomness and of the associated simulation techniques are
addressed.
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1 Introduction

Structural engineering mainly focuses on computing structural responses, assessing structural safety,
and determining parameters for structural design that meet all relevant requirements. For this purpose,
the structural engineer has to apply appropriate structural models, suitably-matched computational mo-
dels and reliable structural parameters as close to reality as possible. Structural models and structural
parameters have to be established on the basis of plans, drawings, measurements, observations, ex-
periences, expert knowledge, codes and standards. Generally, certain information regarding structural
models and precise values of structural parameters do not exist. Computational models must be ca-
pable of numerically simulating the system behavior of the chosen structural model. Mathematically
exact solutions, however, are only available in exceptional cases. In general, weak solutions and ap-
proximations are used, internal parameters, e.g. in material laws, have to be defined and numerical
solution techniques including lower bounds for numerical accuracy are applied. These facts show that
structural engineering is significantly characterized by uncertainty. In order to perform realistic structural
analysis and safety assessment this uncertainty must be appropriately taken into consideration.

Different methods are available for mathematically describing and quantifying uncertainty. Some of
these basic concepts are e.g. probability theory [16], including subjective probability approach [31] and
BAYES methods [29], interval mathematics [1], convex modeling [4], theory of rough sets [22], fuzzy set
theory [2], theory of fuzzy random variables [15] and chaos theory [13]. In the scientific literature the
new uncertainty models are not only controversially discussed [8] but also increasingly implemented for
the solution of practice-relevant problems [27, 7, 3, 6, 12, 21, 30, 26]. These different developments of
uncertainty models do not directly contradict each other but rather constitute an entirety.

The choice of an appropriate uncertainty model for solving a particular problem depends on the characte-
ristic of the uncertainty present in the problem description and the boundary conditions. Most often, the
well developed probabilistic models are applied to take account of uncertainty. For this purpose, random
variables or random processes are generated for describing non-deterministic parameters or parameter
fields. This presupposes assured and satisfactory statistical information to estimate the necessary pro-
bability distribution functions or special and sophisticated expert knowledge to assume prior distributions
for a BAYESian approach. If these prerequisites for dependably applying probabilistic methods are not
satisfied, it is advisable to make use of alternative uncertainty models. In this frequent case the engineer
has to quantify structural parameters on the basis of only few data, which may additionally be characteri-
zed by vagueness, e.g. due to uncertain measurements or changing reproduction conditions. Moreover,
some expert knowledge and linguistic assessments are required to be incorporated into the modeling.
Hence, the engineer does only have an idea concerning the value range of these parameters and a
kind of believe with which some values are more possible to occur than other ones. For modeling such
information adequately a non-probabilistic uncertainty model that considers sets of parameter values
together with subjective weighting information inside the set is needed. Fuzzy set theory provides the
most powerful basis for this purpose. It permits set theoretical modeling of uncertain parameters and a
subjective assessment of degrees with which the particular elements belong to the set by means of a
membership function. This offers the chance for appropriately taking account of non-stochastic uncer-
tainty, which frequently appears in engineering problems without making any artificial assumptions the
validity of which cannot be proven.

This paper mainly focuses on the uncertainty model fuzziness. In order to provide some context standard
Monte Carlo simulations and Monte Carlo simulations using response surfaces are also considered. The
mathematical background of the uncertainty model fuzziness is addressed separately in this book of
proceedings [19]. However, the background of the uncertainty model randomness and the probabilistic
analysis methods are not considered herein since they are well known.

2 Deterministic computational model

The scope of the uncertainty investigations is an assembly of a vehicle body for a commercial van as
shown in Fig. 1. The main components of that assembly are the first cross member and the front part of
the longitudinal member of the frame. Furthermore, the absorbing box between the first cross member
and the longitudinal member, parts of the wheelhouse and the closing panels of the longitudinal member
are also included in the assembly.

4. LS-DYNA Anwenderforum, Bamberg 2005 Robustheit

D - I - 46 © 2005 Copyright by DYNAmore GmbH



 
 

 

 

Figure 1: Position of the assembly within the vehicle

In Fig. 2, boundary conditions and part numbers of important components are illustrated. The assembly
is connected to the bottom sheet of the vehicle body at the flanges of the front and of the back closing
panels. In the simulations, the assembly is fixed in y- and z-directions at these flanges. The assembly
is displaced with a constant velocity against a stonewall. The resulting deformations are numerically
simulated

For simulation purposes, only a half of the frame is modeled (since geometry and loads are symmetric
with respect to the y-z-plane), and the first cross member is cut off at the y-z-plane. Therefore, the
translation in y-direction and the rotation about the x- and the z-axis have to be fixed along the cutting
edge.

Evaluated responses are the internal energy and the stonewall force. The stonewall force is filtered
using a SAE 180 filter. All results and parameters have been normalized.

Fig. 3 shows the deformed model.

DOF 2,3 are fixed
along the flanges

closing panel

part 1139

absorbing box

part 1220part 1221

longitudinal member

part 1134

translation in xdirection
x = 10 m/s.

constraint due to symmetry:
DOF 2,4,6 are fixed

front bumper

part 1210

Figure 2: Boundary conditions and part numbers, the assembly is fixed in y- and z-directions at the
flanges and displaced at a constant rate in x-direction
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Figure 3: Simulation model - deformed configuration

3 Uncertainty quantification

3.1 Randomness

For the purpose of a stochastic analysis the sheet thickness of the closing panel (Part 1139), of the
longitudinal member (Part 1134), of the absorbing box (1221) and of the front Bumper (Part 1210) as
well as a scaling factor for the yield surface of the material of the longitudinal member (Part 1134) have
all been modeled with normal distributions. The parameters used to describe these normal distributions
are empiric.

An overview of the chosen sheet thicknesses and the parameters for the normal distributions are listed
in Tab. 1. The mean values have been obtained by means of an optimization published in [25]. Based on
an ANOVA [28] analysis of the points acquired during the optimization process the 4 sheet thicknesses
with the highest regression coefficients were chosen. Furthermore, the yield surface of the longitudi-
nal member shall be considered which was not used for the optimization but might have a significant
contribution to the results and is characterized by a fair amount of uncertainty.

Table 1: Parameters used for stochastic analysis

description parameter mean standard deviation
sheet thickness of longitudinal member T 1139 1.0 0.020
sheet thickness of closing panel T 1134 1.0 0.021
sheet thickness of front bumper T 1210 1.0 0.062
sheet thickness of absorbing box T 1221 1.0 0.050
scaling factor for yield surface SF 1134 1.0 0.050

3.2 Fuzziness

For the description of the uncertain structural parameters that have been introduced in Sec. 3.1 only
insufficient information is present. In particular, observations, measurements or statistical informations
to estimate the needed probability distribution function types and associated parameters are not avai-
lable. In order to perform a realistic structural analysis the uncertainty must be appropriately taken into
consideration. The mathematical description of these uncertain structural parameters has to be realized
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on the basis of expert knowledge, i.e. experience. For modeling such information adequately the non-
probabilistic uncertainty model fuzziness [18] is applied as an alternative. Fuzzy set theory [32] offers
the most powerful basis for this purpose.

mathematical background A fuzzy set can be described as set of elements x which have a gradual
membership. This gradual membership is represented by a membership function µ(x). Specifically a
fuzzy set on X is defined as

Ã = {(x,µA(x)) | x ∈ X}. (1)

Fuzzy numbers are normalized fuzzy sets Ã with a continuous and convex membership function. The
membership function of a fuzzy number assesses precisely one element x ∈ Ã with µA(x) = 1.

To treat fuzzy numbers (subsequently also called fuzzy values) in a uncertain numerical analysis a dis-
cretization is necessary. The concept of α-discretization provides a numerically efficient representation
of fuzzy sets. An α-level set Aαk of the fuzzy set Ã is defined as a crisp set

Aαk = {x ∈ X | µA(x)≥ αk} (2)

associated with a selected real number αk ∈ (0,1]. All α-level sets are crisp subsets of the support S(Ã).
For several α-level sets of the same fuzzy set the following inclusion property holds

Aαk ⊆ Aα1∀ αi;αk(0, 1], αi ≤ αk. (3)
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Figure 4: α-level sets

For each α-level, the associated α-level sets Ai,αk of the fuzzy input variables x̃i = Ãi constitute an n-
dimensional crisp subspace Xαk

of the x-space, see Fig. 4 for a two-dimensional example. For the
definition of the membership function of the fuzzy value x̃i two elements of the α-level set Xαk are required.
This elements represent the minimum xi,αk,l and the maximum xi,αk,r of the crisp α-level set Xαk as marked
in Fig. 4.

fuzzy structural parameters The uncertain structural parameters of the presented crash analysis
example are modeled exclusively on basis of expert knowledge. The support of all fuzzy values x1 . . .x5
compromises a possible value range. The shape of the membership function depends on an individual
subjective assessment. The discretization is realized with six α-levels (see Tab. 2). The fuzzy value x̃1
of the structural parameter T 1139 ( for the fuzzy structural analysis) is exemplified in Fig. 4.

The application of the fuzzy structural analysis is described in Sec. 5.
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Table 2: Fuzzy structural parameters

T 1139 T 1134 T 1210

α−level x1,αk,l x1,αk,r x2,αk,l x2,αk,r x3,αk,l x3,αk,r

0 0.94 1.06 0.95375 1.0625 0.81 1.19
0.135 0.96 1.04 0.9583 1.0416 0.88 1.13
0.325 0.97 1.03 0.9687 1.0312 0.91 1.09
0.607 0.98 1.02 0.9791 1.0208 0.94 1.06
0.882 0.99 1.01 0.9895 1.0104 0.97 1.03

1 1.0 1.0 1.0 1 1 1

T 1221 SF 1134

α−level x4,αk,l x4,αk,r x5,αk,l x5,αk,r

0 0.85 1.15 0.85 1.15
0.135 0.9 1.10 0.9 1.10
0.325 0.925 1.075 0.925 1.075
0.607 0.95 1.05 0.95 1.05
0.882 0.975 1.025 0.975 1.025

1 1 1 1 1

4 Stochastic structural analysis using LS-OPT

4.1 Monte-Carlo-Simulation

The Monte Carlo simulation is a widely used and accepted method to perform stochastic analysis. The
main advantage of Monte Carlo simulations is the robustness and the reliability of its results. The main
drawback is the huge amount of sampling points needed to obtain reasonably trustworthy results.

Nevertheless, the Monte Carlo simulation keeps being one of the most important tools in optimization
and stochastic investigations and is very well suited to validate more advanced methods.

In this part of the investigation a Latin Hypercube sampling [28] has been used to generate the sampling
points for a Monte Carlo simulation. Latin Hypercube sampling leads to more evenly distributed random
numbers and avoids clustering by dividing the parameters into segments of equal probability. Thus,
providing insight to the extremes of the probability distributions and reducing the amount of sampling
points needed to obtain trustworthy results. A total number of 182 sampling points have been evaluated
in this investigation.

Using LS-OPT a variety of different results can be evaluated which shall be introduced in the following
to provide an overview of possible benefits of such stochastic investigations.

distributions and histograms Fig. 5 and Fig. 6 show histograms of the internal energy as well as the
stonewall force. In addition, standard statistical values such as the mean and the standard deviation are
calculated. Histograms are a good measure to get a first idea of the variance of the responses and can
aid the engineer in the evaluation of the robustness of the system.

probability of failure Furthermore the probability of exceeding some given constraint can be compu-
ted. In Fig. 6 this is illustrated for the constraint:

Fstonewall < 1 (4)

In addition to the probability of exceeding the constraint, a confidence interval is given to evaluate its
trustworthiness. This confidence interval depends on the number n of sampling points used for the
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Figure 5: Histogram of internal energy and statistical parameters for a normal distribution
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Figure 6: Histogram of stonewall force and statistical parameters for a normal distribution as well as a
constraint upon the stonewall force

Monte Carlo simulation and on the desired probability that the true value lies within the confidence
interval. Information on how to compute the confidence interval can be found in [17]. In Fig. 6 this is
illustrated for a confidence interval of 95 %.

identification of bifurcation and clustering An easy way to identify model bifurcation is the evalua-
tion of hill plots. In Fig. 7 the total internal energy is plotted over the sheet thickness of the longitudinal
member. In this case we can clearly identify one outlier with considerably less energy absorption. A
more detailed examining of the corresponding runs reveals that the differences in the internal energy
are the result of different buckling modes.

Because of the multidimensionality of many problems the identification of bifurcations is not always as
easy as in this example. For the outlier analysis of high dimensional problems one might consider using
response surfaces and the determination of the distances of selected sampling points to this averaged
solution of the problem (see Sec. 4.2). More sophisticated methods to separate bifurcation modes make
use of cluster analysis algorithms [5, 11, 14].

statistics of histories In many cases it is desired to observe the evolution of a selected response
and its statistical behavior in time. This aids the engineer to determine the cause of bifurcation and
to understand the model behavior. Fig. 8 shows the stonewall force over time. One can see that the
range between the mean and minimum curves increases significantly beginning with 60 ms. This is
also the time at witch the buckling of the longitudinal member starts in run 47 causing the low stonewall

© 2005 Copyright by DYNAmore GmbH

Robustheit 4. LS-DYNA Anwenderforum, Bamberg 2005

D - I - 51



 
 

 

 

sheet thickness of longitudinal Member (Part 1134)

in
te

rn
al

 e
ne

rg
y

Run 1:
folding and therefore
high energy absorption

Run 47:
buckling and therefore
lower energy absorption

 Run 47 

     0.952       0.968       0.984        1.0          1.016       1.032      1.048

1.08

1.04

1.00

0.96

0.92

0.88

0.86

 Run 1 

Figure 7: Ant Hill plot of internal energy over sheet thickness of longitudinal member, a bifurcation is
clearly visible through the outlier run 47 where the longitudinal member is buckling globally
instead of folding which leads to lower internal energies

forces. Using LS-OPT it is also possible to evaluate other statistical values such as standard deviations
or quantiles.
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Figure 8: Time history of stonewall force and corresponding min. and max. values of all runs

visualization is fringe plots Additional insight into the model behavior can be achieved by fringe
plots of statistical values over the FE net. Especially in order to identify the locations of bifurcation
domains this can be a helpful tool. Fig. 9 shows such fringe plots of the displacement range of the
y-component. In Fig. 9 only the undeformed absorbing box and the longitudinal member are shown, all
other parts have been blanked. These fringe plots are not just static but can be observed for each time
step using LS-PREPOST. This allows to determine not only the location of bifurcation but also the time
of its occurrence.
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Figure 9: Statistical fringe plot of the displacement range of the y-component, this time dependent fringe
plot allow the identification of the locations of bifurcation domains, alternatively other statistical
parameters such as correlation coefficients could be fringed

identification of sensitivities (ANOVA) A means of determining the sensitivities of responses with
respect to different parameters is an Analysis of Variance. This involves basically to create a linear
response surface using a least square fit and then to evaluate the regression coefficients for different
parameters as well as variance relative to this linear fit. In Fig. 10 we can see an ANOVA plot of LS-OPT
for the internal energies.
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Figure 10: Analysis of Variance plot for the internal energy, only the sheet thicknesses of the closing
panel, the longitudinal member and the front bumper can be considered significant
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4.2 Monte-Carlo-Simulation using response surfaces

A meta model [28, 24, 20] is a way of representing a complex and computationally expensive problem by
a simple and computational inexpensive surrogate model. The response surface of such a meta model
can be used to perform the otherwise computationally very expensive Monte Carlo simulations.

LS-OPT offers a variety of different types of response surfaces. In order to use response surfaces one
has to choose the type carefully. Linear response surfaces are not able to describe problems with a
highly non-linear relationship between the model parameters and the responses. On the other hand,
highly non-linear response surfaces might under certain conditions lead to an "over fitted" estimation
of the problem. Generally, it is advisable to use linear response surfaces only if the considered design
space is assumed to be mostly linear.

visualization of response surfaces Although the human mind cannot picture a surface of more than
3 dimensions the demand of visualizing multidimensional response surfaces from the engineers point of
view is high. One approach is to reduce the problem to 2 or 3 dimensions and thus showing only a slice
out of the multidimensional problem. The other parameters are fixed so that the curve or surface that
is visualized only represents one iso-line or iso-surface of the multidimensional surface. This approach
becomes useful when the engineer is able to interactively change the fixed parameters thus exploring
the design space and getting a feeling for the influence of different parameters on the problem. For
exploring the design space the visualization software D-SPEX is used, Fig. 11.

predictive capability of response surfaces In this example the stonewall force turned out to contain
a huge amount of noise. In Fig. 11 this is illustrated. The shown neuronal net was trained using 100
sampling points in the 5-dimensional parameter space. In addition, there are 200 test points, which are
not used to train the neuronal network. This allows to evaluate the predictive capabilities of the response
surface. The test points vary only for the sheet thickness of the closing panel, the other parameters are
fixed to their mean values (see Table 1). The same applies to the visualization of the response surface.
Fig. 11 shows that the neuronal net is merely an estimation of the tendencies of the real response.

If too few sampling points are used the neuronal net cannot tell the difference between the actual physical
response and the noise of the response. The response surface becomes overfitted. This improves if
the number of points for the neuronal net is increased or the ratio of physical variance to noise is high
within the chosen range. However, if the number of sampling points is limited the use of linear response
surfaces is recommended especially for such narrow parameter ranges as in the presented example.

From the engineering point of view it would be advisable to consider a lower filter frequency for the
stonewall force this would reduce the noise in the stonewall force and the deterministic relationship
between the parameters and the response would dominate.

stochastic investigations using the response surface From Fig. 11 it becomes clear that using only
the response surface in stochastic investigations leads to underestimated results since the sometimes
huge amount of noise cannot be considered.

One way to consider the residuals is by evaluating them statistically and adding their variance to the
variance of the responses obtained from the response surface as illustrated in Fig. 12. Further insight
into this topic and the methods used in LS-OPT is given in [28, 23].

comparability of results As can be seen in Tab. 3 using response surfaces one can achieve results
comparable to those obtained by standard stochastic procedures. The statistical results of a Monte
Carlo simulation using a linear response surface build from 40 points are almost within the range of the
confidence interval of a small Monte Carlo simulation using 182 points. Only the probability of failure
is slightly outside the confidence interval of the Monte Carlo simulation. Confidence intervals for the
results obtained with the aid of the response surface method have not been determined.

From the experience of this example one could deduce that for robustness analysis, in which the chosen
parameter range is quite narrow and the expected amount of noise is high, it is advisable to use linear
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Figure 11: Neuronal network as a function of sheet thicknesses of longitudinal member and closing
panel, the prediction error of the response surface is visualized for the 200 test points, that
where not used to train the neuronal network

response surfaces for Monte Carlo simulations. The results, however, cannot resemble a Monte Carlo
simulation especially since there is no such thing as a confidence interval. A further conclusion is that in
order to perform statistical analysis on response surfaces there has to be a fair amount of oversampling.
Only a sufficient oversampling allows to account for the noise of the response. This applies for the linear
response surfaces as well as for higher order response surfaces.

5 Fuzzy structural analysis

In deterministic structural analysis crisp structural input parameters x representing loads, geometry, and
material parameters are mapped with the aid of the computational model onto structural responses like,
e. g. stresses, internal forces, or displacements. This mapping may denoted in the form

x → z (5)

A computational model, which characterizes the crisp dependency between the crisp vectors x and z is
referred to as the deterministic fundamental solution. It represents the mapping model, indicated with
the arrow.
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Figure 12: Consideration of residuals

Table 3: Monte Carlo vs. Monte Carlo on response surfaces (90% confidence interval)

confidence interval confidence interval
points mean dev. min. max. failure [%] min. max.

internal energy
Monte Carlo 182 0.99 0.024 0.022 0.027
Monte Carlo 1500 1.01 0.026 0.025 0.027
linear 20 0.99 0.037
linear 40 1.00 0.024
neuronal net 30 0.99 0.017
neuronal net 100 1.01 0.023
stonewall force
Monte Carlo 182 0.94 0.047 0.042 0.051 9.3 5.1 13.6
Monte Carlo 1500 0.94 0.047 0.045 0.048 10.8 8.77 12.7
linear 20 0.97 0.049 3.6
linear 40 0.98 0.050 14.2
neuronal net 30 0.96 0.048 15.7
neuronal net 100 0.94 0.053 12.9

If structural parameters possess uncertainty, which can be identified as fuzziness the fuzzy structural
analysis can be developed from Eq.5

x̃ → z̃ (6)

Input vectors of the fuzzy structural analysis are then fuzzy structural parameters x̃. Fuzzy result vec-
tors z̃ are determined on the basis of fundamental operations with fuzzy sets. The fuzziness of the
uncertain structural parameters is processed on the basis of the developed α-level optimization [18, 19].
The solution technique is formulated in terms of a modified evolution strategy that targets at a minimal
computational effort.

The concept of α-discretization provides a numerically efficient representation of fuzzy sets. For a
sufficiently high number of α-levels a fuzzy set Ã can be completely represented as a set of its α-level
sets. All fuzzy input parameters are discretized using the same sufficient high number of number of α-
levels αk, k = 1 . . .r. With the aid of the deterministic fundamental solution (mapping model) it is possible
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to map crisp elements of the design space into the result space. The mapping of all elements of Xαk
yields the crisp subspace Zαk .

Once the largest z j,αkr
and the smallest element z j,αkl

of the crisp subspace Zαk have been found, two
points of the membership function of the fuzzy result z are known. The search for the smallest and
largest result elements on each α-level represents an optimization problem and is referred to as α-level
optimization.

The optimization problem is solved with a modified evolution strategy. The modified evolution strategy
is a numerical evolution-based optimization method that is particularly suitable for solving α-level opti-
mization within the scope of a general fuzzy analysis. It does not require any special properties of the
objective function and is low-sensitive to noise. The numerical procedure possesses a simple structure
and can be applied very flexibly in dependence on the problem by adjusting several effective control pa-
rameters. This concept permits an implementation of arbitrary non-linear algorithms as mapping models,
e.g. for structural analysis, into a fuzzy analysis with α-level optimization.

The primary algorithm of the modified evolution strategy is formulated for continuous coordinates and
constant constraints, which corresponds to a fuzzy analysis with non-interactive fuzzy input variables.
An extension to more general conditions, in particular, for dealing with discrete optimization problems is
straightforward.

The computational costs of the modified evolution strategy increases approximately linearly with the num-
ber of dimensions of the problem. The modified evolution strategy may be characterized as a generally
applicable, numerically efficient and robust optimization technique. A post-computation is performed to
improve the performance of the procedure. This combination represents a numerically efficient tool for
fuzzy analysis. Fig. 13 shows the computation of α-level αk by use of α-level optimization. The entire
membership function of the fuzzy result z is determined α-level by α-level.
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Figure 13: α-level optimization

Fuzzy structural analysis using a deterministic computational model The deterministic compu-
tational model as described in Sec. 2 is applied as deterministic fundamental solution for the fuzzy
structural analysis. Eq. 5 may then also described by

z̃ = f (x̃) (7)

All fuzzified structural parameters quantified in Sec. 3.2 are input parameters of the fuzzy structural
analysis. Fuzzy structural analysis then implies the analysis of the structure with the aid of the crisp
algorithm – the so called determinisms fundamental solution – and consideration of fuzzy input parame-
ters.
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Fuzzy structural analysis using response surface In order to reduce the computational effort of
the fuzzy structural analysis the deterministic computational model can be represented by a response
surface, Fig. 11. In this study the neuronal network based response surface according Sec. 4.2 is
adopted. Residuals are considered by adding their variance to the results obtained from the response
surface. This meta model describes a random field, i. e., it possess the uncertainty randomness. The
mapping of the fuzzy input parameters x̃ onto the fuzzy result parameters z̃ requires the selection of one
realization of the random field. The fuzzy structural analysis can be formulated as

z̃ = fRS(x̃) (8)

where fRS denotes a realization of the random field.

5.1 Fuzzy structural analysis results

Fuzzy structural analysis using deterministic computational model In Fig. 14b the fuzzy analysis
result of the internal energy using the deterministic computational model is shown (solid line). The mem-
bership function describes the degree of membership of all elements of the support S(z̃2) = (0.862;1.134).
Any analysis result that is obtained by mapping arbitrary points xi from the space of fuzzy structural pa-
rameters x̃ = x̃1, . . . , x̃5 onto the result space z̃i is at least member of the support.

The computed fuzzy stonewall force is shown in Fig. 14a. The design constraint according Eq. 4 sub-
divides the membership function (solid line) in permissible (0.776 until 1.0) and non-permissible values
(> 1.0). All permissible values of the the fuzzy result (fuzzy stonewall force) hold dedicated permissible
values of the fuzzy input parameters. The largest interrelated subspace of permissible fuzzy input pa-
rameters can be specified with the aid of the smallest α-level of the result membership function, that
fulfill the design constraint. In this numerical study α = 0.805 is obtained. If an exceeding of the design
constraint has to be avoided strictly, the structural parameters have to be within the ranges given in
Tab. 4.

The fuzzy complete processes of the internal energy and of the stonewall force are shown in Fig. 15.
Decisive points of the process have been highlighted.
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Figure 14: fuzzy analysis results

Fuzzy structural analysis using response surface The dashed lines in Fig. 14a and Fig. 14b are
obtained by application of the fuzzy structural analysis using response surface. The difference between
both membership function are caused by the selected realization of the random field. Each realiza-
tion leads to an other membership function. The given fuzziness of the input parameters are strongly
incorporated only by using the deterministic computational model.
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Table 4: Permissible interval of structural parameters for design constraint Fstonewall < 1

x1,α=0.805 x2,α=0.805 x3,α=0.805 x4,α=0.805 x5,α=0.805

lower boundary 0.99 0.9895 0.97 0.975 0.975
upper boundary 1.01 1.0104 1.03 1.025 1.025
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Figure 15: Fuzzy processes of the simulated structural responses z1and z2

5.2 Result assessment

The support of a fuzzy number comprises a possible value range based on opinions of experts or
expert groups, based on experience obtained from comparable problems and additional information.
In some cases it might be possible to gain a partial influence of the uncertainty of structural design
parameters support. The uncertainty of design parameters might be reduced by increasing quality
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control, by performing additional investigations; which is associated with additional financial effort. In
such cases it is useful to know if reducing the uncertainty of the design parameters would have any
substantial impact on the simulated results. In context of fuzziness and fuzzy analysis the membership
is used to perform investigations that might be referred to as sensitivity or robustness analysis.

First of all a measure for uncertainty has to be introduced. The uncertainty of a fuzzy set Ãi can be
assessed with an analog to SHANNONs entropy [9] which is defined by

Hu(Ãi) =−k ·
∫ x=+∞

x=−∞

[µ(x) · ln(µ(x))+(1−µ(x)) · ln(1−µ(x))] dx (9)

The Shannon’s entropy represents the "steepness" of the membership function. When assessing a crisp
set the measure value Hu(Ãi) = 0 is obtained. The most uncertain set with all its elements assessed by
the membership value of µ(x) = 0.5 (except the mean value) yields a maximum measure value Hu(Ãi).

A relative sensitivity measure is defined by the ratio of the modified Shannon’s entropy of the fuzzy
design parameters x̃ to the SHANNONs entropy of the fuzzy result z̃ j

Bs
j =

n

∑
k

Hu(x̃k)
Hu(z̃ j)

(10)

The development of the normalized sensitivity measure Bs
1 and Bs

2 for the fuzzy results z̃1 and z̃2 is
plotted in Fig. 16 over the respective α-value. An increasing α-level means a decreasing uncertainty of
the structural design parameters. An ascending value for the sensitivity measure indicates a sensitive
range. On α-level α = 0.325 a rise of the sensitivity measure Bs

j can be identified. Not until restraining the
design space of structural parameters to the ranges on α-level α = 0.325 (Tab. 2) the structure responses
are comparatively more sensitive.
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Figure 16: Sensitivity of the simulated structural responses
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6 Conclusions

In this paper an uncertainty investigation of a crash analysis example is presented. The uncertainty mo-
dels randomness and fuzziness are applied. The structural design parameters of the presented crash
analysis example do not permit a mathematically assured description as random variables. Only insuffi-
cient information is present. In particular, observations, measurements or statistical informations are not
available. In the case of randomness the probability distribution types and the associated parameters
have to be assumed. The modeling of the fuzzy parameters is also based up on assumptions but the
model fuzziness describes the uncertainty rather than the model randomness. The significance and the
authenticity of the results are in both cases restricted to this assumptions.

The introduced uncertainty model fuzziness admits a new way to appropriately taking into account un-
certainty that does not possess the characteristic of randomness and does not satisfy the prerequisites
of the probabilistic concept. The algorithm of fuzzy structural analysis is a numerically efficient tool
for uncertainty processing that is particularly suitable for non-linear engineering problems. The entire
uncertainty of the structural design parameters is transfered to the results and allows a realistic and
reliable assessment. Robustness or, as shown in this paper, sensitivity analysis is realized on the basis
of SHANNONs entropy. Fuzzy analysis is also appropriate to perform worst case and best case studies
with the presence of uncertainty.

The concept of fuzzy structural analysis as presented in this paper and in [18, 19] is advantageous
compared with most of the fuzzy structural analysis based on fuzzy set theory. Most of the available
methods rely on vertex methods. Due to the fact that only the interval bounds or corner points of
the processed α-levels are taken into consideration during the analysis, these methods are restricted
to monotonic problems. The transformation method presented in [10] is as a further development of
the vertex method. It is approved to be right that this method is no longer restricted to monotonic
problems but among other things its numerical effort increases exponentially with the number of fuzzy
input variables and prevents this method to be applied for real world problems.

Table 5: Fuzzy analysis vs. Monte Carlo simulation

Fuzzy analysis Monte Carlo simulation
prerequisite for un-
certainty quantifica-
tion

� quantification on basis of expert
knowledge, experience, measu-
rements and technological in-
puts; non-stochastic uncertainty
can be quantified

� statistical assured information
(measurements etc.) are neces-
sary

computational
effort

� increases with the number of
considered number of analysis
results and input parameters

� is independent from considered
number of analysis results and
input parameters

� results of different degree of un-
certainty are obtained with a one
fuzzy analysis

� varying distribution parameters
demand additional runs

results � assessed value ranges of all
possible results are obtained

� probability distribution functions
are obtained

� best/worst case studies can be
performed without additional ef-
fort

� determination of failure probabili-
ties

� direct determination of permis-
sible ranges of the structural in-
put parameters

� value range of frequently appea-
ring results

The computational effort of the fuzzy algorithms discussed in this paper is comparable to or better than
standard Monte Carlo simulations but the results are restricted to one response at a time. Evaluation
of further responses always will need additional sampling points. The gain in efficiency using response
surfaces for Monte Carlo simulations can be substantial and the obtained results are well comparable.
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The same gain in efficiency is true if the response surfaces are applied for the fuzzy algorithms. In this
case the computational effort of both methods is exactly the same due to the inexpensive evaluations on
the response surface. Evaluation of further responses will not require additional sampling points since a
response surface can be build for every possible response from the available calculations.

Both methods seem to perform best if the amount of noise in the response is low. The problem of se-
parating noise from physical behavior has been extensively addressed [23] for Monte Carlo simulations
using response surfaces. Using response surfaces it seems substantial to consider the noise of the
response represented by the residuals in order not to underestimate the uncertainty. Advantages and
disadvantages have been condensed and listed in Tab. 5. But it has to kept in mind that both analysis
methods are based on different uncertainty models that provide different information and obey unequal
mathematical definitions and regulations.

Based on enhanced uncertainty concepts fuzzy variables and random variables may also be processed
simultaneously. For this purpose the generalized uncertainty model fuzzy randomness [18] can be
applied, which — additionally — enables the treatment of fuzzy random variables.
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