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Fluid structure interaction (FSI) problems are of great relevance in many engineering fields. Pro-
found understanding of fluid structure interation is essential to explain and predict a wide range
of physical phenomena among which are fluid sloshing in tanks due to horizontal wind forces or
earthquake, wind-induced vibration of slender bridges or high-rise buildings, vibrating pipes and
the dynamics of offshore structures due to cyclic sea currents.

This talk focuses on a wide spread FSI-subclass which studies the behaviour of incompressible
viscous flows and thin-walled structures exhibiting large deformations. Free surfaces often present
additional challenges for such problems. In order to understand fluid structure interaction and
to obtain reliable numerical results both the structural and the fluid part have to be adaequately
modelled and properly coupled.

The equations governing the first field, the fluid velocity and pressure, are naturally written in
an Eulerian (spatial) framework. Thus the fluid is described in a spatial coordinate system. The
structure field, on the other hand, is most appropriately formulated in a Lagrangean coordinate
system which follows the material displacement.

In order to close the gap between these two descriptions an Arbitrary Lagrangean Eulerian (ALE)
formulation is applied for the fluid field. This allows for solving the fluid equations on an arbitrarily
moving grid. Furthermore free fluid surfaces can be included using an ALE framework. The ALE
formulation however requires the solution for the fluid mesh which is treated as the third field
within the coupled problem.

In order to ease coupling Finite Element approximations are chosen for all participating fields.

The fluid is modelled as an incompressible viscous Newtonian fluid. Its behavior is described by
the incompressible Navier-Stokes equations on the temporarily varying fluid domain ;. These
equations formulated for the unknown fields of velocity and pressure read

%—l—(u—uG)-Vu—?l/V-E(u)—i—Vp:f in Q; x (0,7)

V-u=0 in Q x(0,7),

with appropriate initial and boundary conditions. Here u denotes the unknown fluid velocity, p
the unknown kinematic pressure, u® the grid velocity, v the kinematic viscosity, f the body force
in the fluid, e(u) = 1[Vu+ (Vu”)] the rate of deformation tensor and the stress tensor is defined
by o0 = —pI +2ve(u). Free surface effects are incorporated via a local Lagrange or height function
approach.

The classical Galerkin FEM formulation of the incompressible Navier Stokes equations exhibits
a number of numerical difficulties and problems and requires additional stabilization means. A
Galerkin least-squares formulation is used in order to stabilize the variational form.

The structural domain is described by the equations of geometrically nonlinear elastodynamics
pd=V-S+pb in Q,x(0,7)
with appropriate initial and boundary conditions.

The fluid mesh is determined such that it sticks to the moving structural surface as well as rigid
walls while keeping the mesh deformation small and retaining admissible element distortions. An
example of a mesh, deforming with an rapidly changing fluid domain is depicted in figure 1 a).
The mesh topology is kept while the single nodes move. Intelligent mesh moving strategies reduce
the need for remeshing significantly.
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Figure 1: a) Collapsing water column with increasingly deforming ALE mesh b) Tank with flexible
membrane bottom (pressure solution)

Fluid-structure interaction is a classical surface coupled multi field problem. Both fields influence
each other along the common interface where information has to be exchanged during the simula-
tion. It proves advantageous to solve the single fields sequentially. Hence a partitioned iterative
staggered algorithm is used to solve the coupled system in every time step. Subiterations over the
fields ensure continuity of displacements and forces along the coupling fluid-structure interface and
guarantee a stable and accurate numerical simulation even over long time intervals.

The talk will include a short remark on turbulence modelling where an Large Eddy simulation
(LES) based on the variational multiscale method (VMS) is stressed.

W " o C'Q‘b

Figure 2: Bridge cross section subjected to wind induced vibrations (pressure solution)

A number of examples will be presented. Figure 2 shows the result of a long-time simulation. The
depicted bridge cross section has been subjected to horizontally moving fluid. The cross section is
sensitive to vortex shedding which causes increasing vibration. This eventually leads to failure of
the structure.

An example for a 3D-simulation of a filled liquid storage tank with rigid walls and a flexible
membrane at its bottom is depicted in figure 1 b). For the numerical computation the system is
kept in equilibrium until ¢ = 2.1 s by a surface load at the bottom. Then the load is removed and
the system starts to oscillate exhibiting large deformations.
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Instationary, incompressible
Navier—Stokes...
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with 0 = —pl + 2V e(u)

and e(u) = %(Vu n (Vu)T)
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— (laminar)
Governing Equations
Lagrange Euler

— mesh deformation
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interface capturing (volume tracking)
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S

\z\= Y(x,1)

= D(x,1)

@,

reference domain
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Formulations for FSI
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Instationary, incompressible
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FLUID % f,

X P:S 2l —>

MESH Oy =i dp
ionary, ir p ible Navier—Stokes...

M L c.Vu—20FV-eu)+Vp=b
0ty

V-u=0

with ¢ = u-u® bc &ic
Space: Stabilized Finite Elements, ALE
M a+ Nfe) u+ GF p =1,
Time: One-—step—©, Backward Euler, ...
...on moving mesh (pseudo—structure)
KM r=Mr,) with rr=dr

u® = (\"*1—-r")/at  ((D)GCLY)

STRUCTURE

Nonlinear Elastodynamics
Cauchy equation of motion:
pSd=V-(F-S)+ph
with b.c. & i.c.

Structural model:
Three—dimensional shell formulation

Space: Hybrid—mixed Finite Elements
MS d (+ DS d) + NS(d) = f$, — fr(pr.m)
with 1= (ZVFE(U))F

Time: Generalized—a, ...

P -

Single Field Solver

e Coupling

Outline
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Partitioned analysis: ,
e

¥ v

\/ Q
2 2 Py Py \ s r
r

' Non—overlapping ‘
Dirichlet—Neumann—Partitioning

FLUID . s 4o STRUCTURE
Dirichlet problem E;j — — i Neumann problem
f -f,
X p.y Py | — —tK N
i dy be dr
Coupling conditions: 1= kinematic and dynamic continuity on I’
AP —

Partitioned Analysis

Principle of partitioned procedure

Fluid(ALE)—MESH a7 Predictor:
dn+1 =d"
Ki it = — K} it I d£,+P1 _ dﬁ Atdn
with r7+1 = dn! o dnit = di + 4t (3dn— 1d7)
I —> . _
1
X QF; I —> " ‘:',11"+1 e >QSE
= e
FLUID STRUCTURE
MFGT T 4+ NF(e* 1) un+ T + MSdn 1 + NS(d"*1) =
Energy at interface _fSn+1 _f n+1
+GFpmt = 1F, Piperno & Farhat (2001) ext pr7r)
d
on new mesh [r”*1 , c"“] ot | gt with d = ‘{d,r}
r r
T —

Partitioned Analysis Schemes
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Principle of partitioned procedure

Fluid(ALE)—~MESH ar¥

Predictor:

n+1 _ qn
KM pn+1 — _ KM pn+1 dI',P : dr
110 = ~™Nr'r

I n+1 _ 4n qn
[:I:E dI",P = dF+Atdr
with it = dixt |

1 34 1 qn-1
d7t = df + 4t (3d7—- 1d7-1)

oo Loose coupling / e
sequ. staggered '

FLUID STRUCTURE

MFGr+1 + NF(en* ) un*! + MSd 1 + NS(d"+1) =

— £S, 1 _ 1
+GFprtt = £, =B~ tdpr )

d
n+l o+ with —d = {dr}
Py T i

o

on new mesh [ et c"*‘]

Partitioned Analysis Schemes

Synchronous schemes Asynchronous scheme

Piperno 1997, Felippa et al. 1977, ...

Lesoinne & Farhat 1998

-3 6) tn+3

At
t"  midpointrule "+

> ‘é?f;:_r::t: predictors (1) = kinematic and dynamic continuity
i i . . .
different correctors (3) not simultaneously fulfilled:
1= 1
R =
1> violate kinematic continuity condition:

Sar but (oo = (o

L WEAK INSTABILITY J

n+1
T

: —— P —
Loose Coupling Schemes — Variants
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Cavity with oscillating top and flexible bottom plate
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Strong coupling scheme

dnti

Fluid(ALE)—MESH i+ Relaxation of interface position
K ’ZTL = K} r’r’ﬂn [:EE\ d?‘filt =0 -o) d?‘fi‘ +o; d?‘fih
with 1. = dn*! ! Le Tallec & Mouro (1998)

Bl ol = Quarteroni (1990)
< —>
1 . o
d—> e Iteration dntl
onT
th tn+1
FLUID STRUCTURE
Sd S —
M7+ NF(elE) un + M drsl + NS(dr) =
— S+t _ 1
+GF pr = fnt =150~ flpr )
on new mesh [ el @l ] vy o with d =19
PRitt s Thiss q

lterative Dirichlet—Neumann Substructeringv
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Strong coupling scheme

dntl

i - It Relaxation of interface position
ui
K 0 = K oo ity = O~ ) o5+ o dl,
with %1, = dnt 2 wj = ???
— - 3 3
1 . ~
% > yhe Iteration [/ % E
ot on I’ o
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FLUID STRUCTURE
g S 4 S —
MFanE! + NF(el ) unt! + mMEdf o+ NS(d7) =
— fS.
+GF prfl = fh o+t = 57" = frlpr )
1 1 . _ Jd,
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~

lterative Dirichlet—Neumann Substructering

[ lteration rule: =1 =A
—— ———
d?f,-h =01 -o) d?j}‘ + o, d?j}h driy = dp+o; (S§1 fr ext, mod. = S ' (SF + Ss) dr; )
Schur complements (structure & fluid) M
Gradient method Aitken method
(Method of steepest descent) for vector equations
Irons & Tuck (1969), based on Aitken’s A2—method (1937)
T
o 9 9 .
wj = wj =1- [u”.”’

g9/ Sg! (SF + ss) " 9;

Residuum (local optimal search direction)J Aitken factor 4T

T

n+1_ n+1 n+1
. Nl — on+d N1 (Adr‘: Adr,r+|) Admﬂ
= Schur complement free evaluation! w =t @) ——

2
1 1
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Robust & local optimal convergence a Extremely cheap!

Numerical costs = No convergence analysis for vector case

= -

Acceleration of Convergence
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Vortex Induced Vibrations
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Vertical tip displacement:
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e Free Surface

Outline

Tacoma Narrows Bridge, USA
(Collapse 7.11.1940)

Hoéga Kusten Bridge, Sweden
Simulation wind induced vibration

Kovacs, WEINSTADT 1995

~

Vibration of Bridges
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fluid

bridge cross section

pressure

T —
Tacoma Bridge Cross Section

Dynamic boundary conditions

Dynamic boundary condition Balance of tractions at surface
o-n=h onlg g-n=06¢-n+yxn
with ¢ = —pl + 2ve(u) T— surface tension
stresses in air
Simplified definition:
Les

o-n=ykn on I
R ... curvature radius

y ... surface tension coefficient

x =1 .. curvature of free surface

R

P —
Free Surface Flows
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Kinematic boundary conditions

Kinematic boundary condition General elevation equation
ar ar. ar. ar
h= . _, Org g 69 , 6% 6 _
u-n=u”-n onlg u1ax1 u2ax2+u3+u1ax1+u2ax2 uz =0
ar,
L
with u; Fa

= ’closure problem’

FFS

n ... surface normal

r ... grid displacement

Free Surface Flows

Kinematic boundary conditions

Kinematic boundary condition General elevation equation
ar. ar. ar. ar.
h— yG. _ 3 _ 3 c%3 %3 .6 _
u-n=u”-n on Il u1—6x1 UZaX2 + Ug + Uj ax, + uy s uz =0

a9
with ui = ot
= 'closure problem’

local Lagrangean approach
u-ut=0

n ... surface normal
height function approach =r, =r, =
r ... grid displacement
arg 4 arg + arg -0
ot T Uiax, TlUaax, Ys T

AP —
Free Surface Flows
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Kinematic boundary conditions

Kinematic boundary condition General elevation equation

ar. ar. ar. or.

.n=ub. s Y ¢ . 6% _ 6 _

u-n=u”-n onlg u1ax1 “23x2+“3 u1ax1+ 2 3, uz =0
or;
with uf = a—t’
= ’closure problem’
n r X .
For general cases (curved boundaries, fsi, ...)

FFS
= general elevation equation +

dimensionally reduced

n ... surface normal pseudo—structural approach

r ... grid displacement membrane

T

Free Surface Flows

Partitioned
implicit

P Idea: Decomposition of fluid domain

Q=18 U L

element layer or
boundary layer with constraints

» Introduce r or u® as additional unknown on I'rg ey s e, e e g
] i 19 20x, 87T M1 ox 20x, 8
and include weak form of the respective Xy 2 1 2
kinematic boundary condition on I'zg u; — uiG =0
plus stabilization as additional term in arg ar ary
— t Uiz + Uz —U; =0
at X4 X,

variational formulation

Partitioned Implicit Free Surface Algorithm
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Strong coupling scheme

+1 . . -
i - a7 Relaxation of interface position
ui
Kl il = -k it [:EE d7tl = (1 - o) 2% + 0, A0
with r2%1, = dpt’ e
— - 3 X
1 . ~
% 1—» i Iteration it o),
ot on I’ o
th— tn+1
FLUID STRUCTURE
g S qn+1 S 1) —
MFanE! + NF(el ) unt! + mMEdf o+ NS(d7) =
+GF prfl = fh o+t =fod " = flpn
) d
on new mesh { rif, cix} Pty with d = {d,r}

: : AP —
Fluid Structure Interaction

i=0: Predictor: 17!, =r"+u®At on I

i=0: Predictor: df! = d + At (gd? _ %d;%)

dnti

Fluid(ALE)-MESH i+ Relaxation of interface position
K% l’z,ﬂ1 = _K;Mr "’rH;l1 [:EE‘ d;’."’il‘ =(1-w) d?‘fﬂ + o, d?‘fih
with i1, = djt :

n+1 - i
g Fivq Iteration it
on T’
th— tn+1
FLUID STRUCTURE
2 S gn+1 S(gn+1) =
wra o (e e ur e | WA () =
— fS.n+1 _ 1
+ GF p7++1‘ = f;'(tn” - fexrnJr ff(pr’ rr);’:1
on new mesh { i el } n1 +1 wii @ = {gr}
pl‘.:+1 ! T’;‘,r‘+1 f

Partitioned Implicit Free Surface FSI
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1.0cm

1.0cm

¥

T

Material Parameter:

g
=1.0 2
¢ cm?3
_ g9
v =10 s
— g9
y = 73.0?

Boundary Conditions:
— no Dirichlet—BCs

— include surface tension

Discretisation:
10363 Q1Q1 fluid elements

1.0cm

Example:

1.0cm

X

T

Nonequilibrium Rod

Material Parameter:

— 109
0=10 omd

- g
v =10 cms

_ g
Y =730

Example: Nonequilibrium Rod
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Material Parameter (Oil):

g
— 092 2
o = 0.9 o’

v =909

i\

External Load:

P

T T
2021 24

980
m]
32
1
T

Geometry:
a =10.0 cm
d=10.0 cm

Discretisation:
20 x 20 x 8 Q1Q1 fluid elements

20 x 20 linear elastic shell elements

Gravity:
9(t)

2.0 t

Example: Tank with flexible bottom plate

e Turbulence

Outline
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Schematic Classification of Alternative Procedures

(Breuer 2000)

degree of modeling

A
100% +—~+4 RANS r————————— Reynolds Averaged Navier—
Stokes
LES Large Eddy Simulation
0% oo DNS |— Direct Numerical Simulation
(Nonodes — Re3)
| | | »

} } T » computing

low high extr:?gT]ely costs

Simulation of Turbulent Flows

Kolmogorov Energy Spectrum
(Kolmogorov 1941)

E() ~x5/° o
INE@x) 4 \ Leonardo da Vinci (1452—1519)
N\ l,
3 | where the
| turbulence
"where the | of water co-
turbulence .| mesto rest”

of water is
generated”

|

|

|

I "where the
| turbulence
I of water
I maintains
: for long”
|
|

|
Fenergy con-"
taining range

x|

inertial range viscous range

Energy Spectrum of Turbulent Flows
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Variational Multiscale Method (VMM)

(Hughes et al. 1998—-2004)

inEe) 4 7 o i

large resolved scales

ithout modeling t o
without modeling term E(x) ~ x5/%

Inx

v

— '
Ink Inx Inxpys

subgrid—scale model only acting
on small resolved scales

VMM — Separation of 3 Scales

Variational multiscale method for Navier—Stokes equations (3 scales)

(Collis 2001, Gravemeier 2003) large (resolved) scales
small (resolved) scales

| unresolved scales

separ. of function space 7, = ?Z Sr,d ‘IAF,,

=a+u +u w=wt+w +w

separ. of solution and weighting functions ., A A
P gning =ptp tp 4=qd+tq tgq

3 subproblems

Bys(v".q"a" +u +dp" + p + p) = (vJ‘,f)Q + (VJ’,h)rh =p large—scale eq.
BNS(v’,q’;JTh +u' + ﬁ,ﬁh +p + 13) = .o+ (v’,h)rh =p  small-scale eq.

A n g A DA (a2 2
BNS(v’q’u Futmptp +p) (v’f)!? - (v’h)l“h ™ cquation for the
unresolved scales

: ) P 4 Of the problem
no solution, modeling of dissipative effect on small scales

VMM — Separation of 3 Scales
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Variational multiscale method for Navier—Stokes equations (3 scales)

large (resolved) scales
small (resolved) scales
i unresolved scales

(Collis 2001, Gravemeier 2003)

separ. of function space 7, =‘Z7ﬁ697f’u69‘ff,,
separ. of solution and weighting functions =D W W

. utl wel 1 u 1 _ 0 A _ " A
P gning p=p+tp tp q=q+q +gq

3 subproblems
h —h.—h , —h , _ (sh modeled
et s [ [ = (1), ¢ (), e T

[ ’ ’ B o ' ’ modeled
BNS(" .q @+ u ﬁh +p ) + D(u,p) = (v'.fg + (v ,h)rh - small—scale eq.

equation for the
unresolved scales
4 of the problem

no solution, modeling of dissipative effect on small scales

VMM — Separation of 3 Scales

Plane mixing layer

uy=U=+10

X T
initial velocity distribution:
free—slip b.c. . y
hyperbolic tangent profile
_ 2x, — 1
% periodic periodic ) = UMHh( 0 ) - — ]
b.c. boundary /
conditions
free—slip b.c. X initial vorticity thickness 9,
1.00 ¥
u,=-U=-10
y=357-10"° &y = TIS U=10 spatial discretization: 40x40 — 240x240 Q1Q1 elements
= Re = 10,000 temporal discretization: ¢ = 0.0125 (570 time steps)

o

Turbulent Flow Example
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e Conclusions

Outline

Multifield > 2 (Single Fields ;)

Pure FE Approach

Iterative Strong Coupling

Implicit Free Surface

Variational Multiscale Method for
Turbulent Flows (LES)

Conclusion
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