

A cost-effective Cold Roll-Forming FE model for industrial applications

Authors: Leonardo Marconi, Timothy Senart, Claudia Cofano

leonardo.marconi@crmgroup.be timothy.senart@crmgroup.be claudia.cofano@crmgroup.be

For a better future

Index

Introduction

- CRM Group in a nutshell
- Cold Roll-forming process
- Research overview and objectives

> Experimental campaign

- Experiment set-up
- Outputs

> Numerical model

- Methodology
- Sensitivity and calibration
- Results
- > Conclusions
- Future works

M group

Introduction

CRM Group in a nutshell

Cold Roll-forming process

Research overview and objectives

M GROUP

CRM Group in a nutshell

Our Identity:

Founded in 1948 from the merger of independent & private research centres, we focus on *processes*, *products* & *solutions* for the metallurgical industry

Our Mission:

Create value through innovation, transformation and generation of new markets, to empower metals in societal, environmental and economic challenges

Expertise areas:

- Circular Economy
- Energy Transition
- Construction
- Digitalization
- Advanced Manufacturing

Testing, modeling and optimization of steel structures and manufacturing processes

Bringing innovation all over the world with more than 265 engineers

Our industrial members

GROUP

Cold Roll-forming process

Continuous bending process of a long metal sheet. The sheet is formed passing through pairs of rotating rolls (stations). Each station makes an incremental part of the bend.

"Forming flower" Shape evolution at each station Strip of metal sheet 1st Station

Illustration of a Cold Roll-Forming line, from Urheber GmbH

Strength:

- High production volume [1]
- Capability to form UHSS grades [2]

Problematics [3]:

- Geometrical imperfections
- Unbalanced springback

Research goal and methodology

Aim:

Developing a cost-effective methodology to investigate cold roll-forming processes in LS-DYNA

Research phases :

Experimental campaign

GROUP

7

Experiment set-up

Outputs

> Observations

Experiment set-up

Pilot cold roll-forming line:

- Station: 9 (equally spaced 250mm)
- Blank speed: 4.2 m/min

Cold roll-forming line at CRM Group

- Dimensions: 0.63mm thick, 2000mm long, 360mm wide
- Material: S350GD grade (characterized by tensile tests EN ISO 6892)

Tools:

- 3D scan (\rightarrow Cross section)
- Strain gauges (\rightarrow Longitudinal strain)

Experimental output – Longitudinal strain

Experimental outputs – Cross-section

10

Campaign conclusion

Experimental campaign outcomes:

1) Results for correlation

- Longitudinal strain
- $\circ~$ Final cross section

2) Observations

- Low roll eccentricity and displacement
- Blank-line misalignment controlled

3) Open question

 $\circ~$ Cross section deviation

Observations:

Low eccentricity and displacement

Rolls *displacement* < 0.25mm (of which 0.12mm of *eccentricity*)

No feeding misallignment

Numerical model

FE Methodology

- Guiding script
- Sensitivity and Calibration
- > Results

 M group

Non-linear Finite Element Model

o Method

Ο

Ο

Ο

- ➔ Non-linear static implicit FEM
- Material → Isotropic elasto-plastic law (Type 24)
- Section → Fully integrated shell elements (Elform 16)
 - Contact → FORMING_SURFACE_TO_SURFACE_MORTAR
 - **MPP domain** → dec { region { parts 10 sx 1.e9 } sx 1.e9 }

Inputs:

- 1) Sheet properties
- 2) Forming line geometry
- 3) Roll forming flower

Guiding method

 $X_{i(N)}$, $Y_{i(N)}$ for each "N" and "i" are input through the "meshed forming flower":

Sensitivity analysis

CRM group

Correlation status

1) Longitudinal strain

2) Final cross-section

- Accurate correlation
- Deviation after 7th station

 ${\sf M}$ group

Calibration Phase

17

 ${\sf M}$ group

Results

1) Longitudinal strain

Correlation at 2 points

Strain field on the flange

• Accurate correlation:

- Prediction of strain gradient
- Better trend after 7th station

o Robust results

- Uncertainty range:
 - Material properties
- Gauge misalignment (±2.5°)

2) Final cross-section

- \circ Prediction of spring back
- $\circ~$ Simulation of the deviation
- Correction of forming flower

GROUP

Conclusions

Conclusions

> Future works

Conclusions

Project aim:

Pros

To create a numerical methodology able to give *fast* and *accurate* data about the cold roll-forming process.

Forming process design \rightarrow Numerical model creation \rightarrow Process check

Cons

1) Results accuracy & robustness

- Major outputs validated
- Possibility to check the forming flower
- Small uncertainty range

2) Cost-Effectiveness

- Analysis time < 24h (18 CPU, Intel® Xeon® W-2195 2.30GHz)
- Small portion of the blank modelled
- Highly automatized pre-processing

3) Easy to interface with other models

- \circ $\,$ LS-DYNA makes it easy VS. dedicated software $\,$
- Future work & final aim of this investigation

1) Roll forming line stiffness

- No effects of roll-forming line flexibility
- Future work

2) Different physics of the rolls

- \circ $\;$ No info about the rolls torque required
- \circ No sensitivity about friction coefficient

Future works

1) Validation of new profiles

2) "Semi-rigid" roll-forming line

To account for roll-forming line flexibility Stiffness of the line:

- Axis modelled through beam elements
- Rolls' stiffness modelled through springs

3) Study effects of manufacturing over product performances

Mapping stress/strain state from manufacturing.

Convenient on LS-DYNA

Thank you www.crmgroup.be

leonardo.marconi@crmgroup.be timothy.senart@crmgroup.be claudia.cofano@crmgroup.be

For a better future

Literature

- [1] Liu, Huamin, Zhiqing Liu, and Zhongping Zou. "FEM Simulation of Cold Roll Forming in the Car's Anti-Collision Beam." Journal of Computational and Theoretical Nanoscience 9.9 (2012): 1472-1476.
- [2] Tsang, Kwun Sing, et al. "Industrial validation of strain in cold roll forming of UHSS." Procedia Manufacturing 15 (2018): 788-795.
- [3] Watari, Hisaki, and Hiroshi Ona. "Characteristic features of shape defects occurring in the cold roll forming of prenotched products." Journal of Materials Processing Technology 80 (1998): 225-231.
- [4] Kiuchi M, Koudabashi T. "Automated design system of optimal roll profiles for cold roll forming." Proceedings of the third international conference on rotary metalworking processes, Kyoto, Japan (1984): 423–36.
- [5] G.T Halmos: "Roll forming handbook", CRC Press, 2005

A cost-effective Cold Roll-Forming FE model for industrial applications

Authors: Leonardo Marconi, Timothy Senart, Claudia Cofano

leonardo.marconi@crmgroup.be timothy.senart@crmgroup.be claudia.cofano@crmgroup.be

For a better future