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1 Introduction 

Simulations of ice interaction scenarios are not as reliable as desired. The reason for this shortcoming 
is often the limitation of the ice model. Whereas steel models for the ship or the structure are well 
established, there is no model available for ice that can capture the complete interaction process. This 
is due to many reasons, such as complex ice properties. Here, the focus is on the brittle fracture 
behavior of ice. Cohesive zone elements are suggested to model fracture whereas standard finite 
elements reflect the bulk material. A general procedure to determine model parameters for the 
cohesive zone model is outlined.  
 
The motivation stems from the retreat of sea ice and increased economic interest in the arctic regions 
[1] as well as the development of offshore wind power, e.g. in the Baltic Sea [2]. The consequence is 
an increasing number of ship operations and offshore activities in ice-covered waters. Ice-loads are 
significant for the design of maritime structures operating in these waters. Currently, the dimensioning 
process against ice loads is mostly based on empirical formulas [3, 4]. They are used to estimate 
upper limits of static global loads, but they don’t give local loads and the structure is modeled as rigid. 
Dynamic behavior and ice interaction are neglected.  
 
On the other hand it is important to include interaction in the model since this can influence the 
outcome, e.g. forces [5]. Numerical simulations, e.g. FEM, make it possible to model the structure as 
deformable and therefore consider interaction between ice and structure. It is also straightforward to 
test different ice and structure geometries. Moreover, they give higher resolution results and can be 
used in local load driven design. Overall, such simulations are a desirable tool for the design of 
maritime structures. However, the accuracy of these simulations is often limited by the ice model. This 
includes the material model, e.g. viscoelastic, as well as fracture behavior.  
 
In this research, the focus is on modeling the fracture behavior of ice under high loading rates, i.e. in 
brittle failure modes. This kind of behavior is also expected to show in ice impacts with ships. 
Currently, this is often done by erosion of solid elements in the contact surface, e.g. [6]. Because the 
contact surface in ice interaction is dominated by compression, element erosion leads to unphysical 
results. The applied numerical method has to preserve the volume and allow for an arbitrary fracture 
path. Furthermore, the mass transport of broken ice pieces in the contact surface and spalling of 
bigger ice spalls must be represented by the model. Lastly, multiple, branching cracks need to be 
captured by the model within reasonable computation time. According to these requirements, the 
cohesive zone method (CZM) is applied.  
 
Several authors use the CZM to simulate brittle ice problems [7–10]. However, the model parameters 
are often tuned for a specific application. It is not clear how to derive parameters for a different 
purpose and what the limitation of the original model and its parameters are. Consequently, the 
general applicability of these approaches is limited. Here, a general procedure is given to calibrate 
parameters for a bilinear cohesive zone model based on a range of different experiments.  
 
As an exemplary application, the CZM is used to simulate an ice drop test in the laboratory. This way, 
high loading rates and elastic brittle behavior is ensured. Creep is negligible. Furthermore, the 
conditions during a laboratory test are controllable and hence known. This is seen as a first step 
toward ice models for full scale scenarios.  
 

2 The Cohesive Zone Method and its implementation 

The cohesive zone method was originally proposed in the 1960’s, see e.g. [11, 12]. A comprehensive 
Introduction to the cohesive zone method is given in [13]. The cohesive zone handles the process 
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zone ahead of a crack tip. In this zone traction between two virtual surfaces exists. The traction is a 
function of the displacement between the surfaces, the traction-separation law (TSL). The cohesive 
element fails when the separation reaches a critical value. The maximum traction and critical 
separation of a TSL are material parameters. Moreover, various shapes of TSL exist to model different 
types of fracture, e.g. ductile or brittle fracture. Also, TSL can incorporate damage, i.e. the separation 
process is irreversible. In this case the function does not follow the original path back to the origin 
once the maximum traction is reached. Instead, the element stiffness is permanently decreased, and 
the path is a straight line from the current state to the origin.  
 
Here, a bilinear TSL with damage is used since the ice is presumed to show brittle behavior. All 
inelastic deformation is assumed to be a separation of crack faces. Currently, the cohesive mixed 
mode material model (MAT_138) is used. It was developed to simulate delamination in laminated 

composites [14]. The key input parameters are traction, maximum separation and the energy release 
rate. Delamination initiation is predicted using a quadratic failure criterion: 
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Where 𝜎 and 𝜏 are normal and shear stresses, respectively and 𝑇 and 𝑆 are the maximum tractions 
the element can sustain without being damaged. Delamination propagation is computed through the 
interaction of energy release rates: 
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In the model, zero thickness cohesive elements are put in between all faces of the bulk elements (Fig. 
2.). Tetrahedron elements are used instead of hexahedrons to allow for a somewhat arbitrary crack 
pathing. Overall, implementing cohesive elements into a model is straightforward. However, it 
introduces several issues which need to be addressed.  

 

 

 

Fig.1: Traction separation law for MAT138 [15] Fig.2: Detail of a Cohesive Zone Model (grey: 
shrunk solid elements, black: CZM 
elements) 

 

2.1 Added Mass of the CZM Element 

Cohesive elements are not massless. The addition of cohesive elements to an existing FE model 
increases the overall mass of the modeled body. An incorrect mass leads to unphysical results for 
energy limited problems. The total mass 𝑚 of a model with cohesive elements is defined as the sum of 
the mass of solid elements 𝑚𝑆 and cohesive elements 𝑚𝐶𝑍𝑀:    

𝑚 = 𝑚𝑆 + 𝑚𝐶𝑍𝑀 (4) 

In order to compensate for the additional mass of the cohesive elements, it is proposed to reduce the 
mass of the solid element and adapt the mass of the cohesive element accordingly.  

The following relationships are representative for a single solid element with a volume 𝑉𝑆 and a 

surface area 𝑆𝑆, surrounded by cohesive elements. The real density of ice is 𝜌𝑟𝑒𝑎𝑙. The adapted 

densities of the solid elements 𝜌𝑆
′  and cohesive elements 𝜌𝐶𝑍𝑀

′ are calculated as: 

𝑚 = 𝜌𝑟𝑒𝑎𝑙𝑉𝑠   (5) 



15. LS-DYNA Forum 2018, Bamberg 

 

 

 
© 2018 Copyright by DYNAmore GmbH 

𝑚𝑆 = 𝜌𝑆
′  𝑉𝑠  (6) 

𝑚𝐶𝑍𝑀 =
1

2
𝑆𝑆𝜌𝐶𝑍𝑀

′ 𝑡𝐶𝑍𝑀  (7) 

𝑓𝑚 =
𝑚𝐶𝑍𝑀

𝑚
  (8) 

The artificial thickness of the cohesive elements 𝑡𝐶𝑍𝑀 is one unit of length (e.g. in SI units 1m). A mass 

ratio 𝑓𝑚 between cohesive and solid elements is introduced. The density for the cohesive elements 
results from Equation 5, 7 and 8: 
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Correspondingly, for a mesh of cubes or tetrahedrons with an constant edge length 𝐿𝑆, the following 
relations can be obtained by: 
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The corrected density for the solid elements is determined by:  

𝜌𝑆
′  = (1 − 𝑓𝑚)𝜌𝑟𝑒𝑎𝑙 (12) 

We recommend a value for 𝑓𝑚 of 0.5. In addition, the density of the cohesive elements only depends 

on the element size 𝐿𝑆. All other quantities are physically determined. 

      

2.2 Artificial compliance 

Using zero thickness cohesive elements with a bilinear TSL introduces artificial compliance to the 
model [16]. A straightforward solution is to use a very high initial stiffness, i.e. slope of the TSL. This 
approach is limited since the time step is controlled by the elastic modulus of the material. Element 
size also influences artificial compliance [16]. To determine the correct elastic moduli for the elements 
a series of springs is assumed. The spring stiffness of a rectangular solid element 𝑘𝑆 and cohesive 

element 𝑘𝐶𝑍𝑀 is defined as: 

𝑘𝑆 =
𝐸𝑆𝐴𝑆

𝐿𝑆
  (13) 
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The cross-section area of the cohesive elements 𝐴𝐶𝑍𝑀 and the solid elements 𝐴𝑆 can be assumed to 

be equal. Furthermore, the elastic moduli from the solid and cohesive element 𝐸𝑆 and 𝐸𝐶𝑍𝑀 and also 

the element lengths 𝐿𝑆 and 𝑡𝐶𝑍𝑀 are required. 𝑡𝐶𝑍𝑀 is an artificial thickness with a value of one.  A 

stiffness ratio 𝑓𝑘 is defined:  

𝑓𝑘 =
𝑘𝐶𝑍𝑀

𝑘𝑆
  (15) 

The left side of Equation 16 represents the series of solid elements without CZM elements. The right 
side consists of the sums of spring stiffnesses of cohesive and solid elements. To maintain the original 
overall stiffness, the artificial compliance introduced by the CZM elements has to be compensated by 
increasing the spring stiffness of the solid elements 𝑘𝑆

′ . 
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Introducing the number of solid 𝑛𝑆 and cohesive 𝑛𝐶𝑍𝑀 elements into Equation 16:  
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We assume 𝑛𝑐𝑧𝑚 = 𝑛𝑆 − 1, 𝑓𝑘 as well as 𝑘𝑆
′ = 𝐸𝑆

′𝐴𝑆/𝐿𝑆, then the adapted elastic modulus 𝐸𝑆
′ of the solid 
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Increasing the number of elements leads to:  

lim 𝑛𝑠 → ∞ ∶ 𝐸𝑆
′ = 𝐸𝑆 (1 −

1

𝑓𝑘
)

−1

 (19) 

The corresponding stiffness for the CZ elements is defined according to the equations (13,14 and 15) 
as follows:  

𝐸𝐶𝑍𝑀 =
𝑓𝑘𝑡𝐶𝑍𝑀𝐸𝑆

𝐿𝑆
 (20) 

For tetrahedrons, Equation 20 is adjusted by simulations of a simple block in tension. The result is: 

𝐸𝐶𝑍𝑀 =
𝑓𝑘𝑡𝐶𝑍𝑀𝐸𝑆

0.5 𝐿𝑆
 (21) 

To determine a reasonable value for 𝑓𝑘, the graph in Figure 3 is used. It indicates the increase of the 

solid element stiffness, in dependency of the stiffness ratio 𝑓𝑘, which is necessary to compensate the 
artificial compliance. In order to limit the necessary increase in the stiffness of the solid elements, a 
value of 𝑓𝑘 = 10 is recommended. At first glance, a higher value for 𝑓𝑘 seems favorable, as this 
improves the convergence behavior of the equation 18. But, as mentioned, this also decreases time 
step size. With 𝑓𝑘 = 10 the deviation in tension or compression in case of 10 elements is around 1% 
against the limit of the function 19.  
 

 

Fig.3: Increase of stiffness of the solid elements depending 

on the stiffness ratio 𝑓𝑘 

The approach was validated by simulating a simple block with a dimension of 1 m by 1 m meshed with 
hexahedrons and tetrahedrons with edge length of 0.1 m. The block was loaded under compression, 
tension and shear with a final deformation of 0.1 mm each. The resulting stresses are shown in Table 
1. The deviations were small. These stiffness validation simulations were also conducted successfully 
for different element sizes. Adding a segment based *CONTACT_AUTOMATIC_SINGLE_SURFACE 

contact algorithm (SOFT=2, DEPTH=5) barely affected the results. This contact algorithm turned out 

to be necessary for later, more complex simulations.  

Table 1: Comparison of solid element stresses for the validation of stiffnesses  

 
Without CZM Hex CZM Tet CZM Tet CZM contact 

 Pa Pa Pa Pa 

Tension (z-Stress) 9.00E+05 9.09E+05 9.00E+05 9.10E+05 
Compression (z-
Stress) -9.00E+05 -9.09E+05 -9.01E+05 -9.15E+05 

Shear (vM) 5.77E+05 5.81E+05 5.75E+05 5.81E+00 
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2.3 Number of elements in the process zone 

Another issue is the number of elements in the process zone necessary to reflect realistic fracture 
initiation and propagation. First, the length of the cohesive zone has to be estimated. This can be done 
with several formulas, which are typically given for either plane stress or plane strain conditions. The 
cohesive zone length varies significantly for different formulas. Here, it is estimated for brittle fracture 
and plane strain according to [17]   

𝑙𝑐𝑧 =
9𝜋

32
(

𝐸

1−𝜈2)
𝐺

𝜏𝑚𝑎𝑥
2  (22) 

Second, the length is compared to the average element edge length. The minimum number of 
elements required in the cohesive zone is subject of ongoing discussion, and literature values range 
from two to more than 10 elements. It is also possible to use a bigger failure separation value, as long 
as the energy release rate is constant. In other words, the TSL can be flattened to achieve a sufficient 
number of elements in the cohesive zone [18]. According to Equation (22) and an element edge length 
of 10 to 15 mm, the number of elements in the process zone is approximately 2-10, depending on the 
separation mode. It has to be kept in mind that the plane strain assumption is not valid in many cases.  
 

2.4 Delamination initiation 

Lastly, delamination initiation is independent of compressive stress (𝜎𝑧 ≤ 0) for laminated composites, 
Equation (2). This is not the case for ice. The ratio of hydrostatic stress to von Mises stress influences 
the failure mechanism [19]. If the ratio exceeds a value of approximately 10, ice is unlikely to fail 
during experiments. However, this phenomenon is expected to have little influence on the current 
simulations, since the ice is not laterally confined.  
 

3 Material parameter identification based on small scale experiments 

To show the principle applicability of the CZM for ice related problems and determining the material 
parameters a series of small scale experiments were simulated. Literature and own measurement 
results were available for comparison to the simulations. The following simulations were conducted: 
Tensile test, shear test, compression test, CTOD test and a tensile splitting test.  
 
All simulations were performed with the same basic settings. Tetrahedron elements were used to allow 
random crack propagation. Only the CTOD test was discretized with hexahedrons, because of the 
known fracture path. The average edge length of the elements of the ice models was 10 mm. Due to 
hourglassing problems of the hexahedron solid elements a fully integrated element type etype=-1 

was used. For the tetrahedron elements the element type 13 was chosen. The cohesive elements 

were either of type 19 or 21. 

 
Depending on the complexity of the model, the meshing was performed with external programs or in 
LS-PrePost. In order to maintain uniform stiffness properties, the element size may change only 
slightly. Symmetric planes have to be avoided. In general, the cohesive elements were inserted into 
the existing mesh with LS-PrePost. The time step size was generally reduced by TSSFAC=0.45 in 

*CONTROL_TIMESTEP. The default critical time step size estimation of ICOH=0 in *CONTROL_SOLID 

is chosen. Without reducing the time step size instabilities are observed.  
 
To avoid a penetration of the solid elements after the erosion of the cohesive elements a segment 
based *CONTACT_AUTOMATIC_SINGLE_SURFACE algorithm was applied. The segment set consists 

of all solid faces of the ice part. To obtain a stable contact behavior the additional contact options of 
card A soft=2 and depth=5 were selected. A constant friction coefficient of 0.01 for the contact 

between ice and ice was assumed. The material properties of ice are generally affected by defects 
and imperfections. To model the resulting inhomogeneity of the material behavior one percent of the 
cohesive elements was randomly deleted. 
 
The material properties for solid ice elements and the cohesive elements were obtained by values 
given in literature and parameter identification with simulations of the presented tests. First the tensile 
test and the shear test were simulated. An energy release rate for ice of 4 J/m² is assumed. The value 
is calculated according to the fracture toughness of 0.2 MPa/√m given by Palmer [20]. Measurements 
for mode II are not available. Therefore, the energy release rate of mode I is also adopted for mode II. 
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The assumed value of 4 J/m² seems reasonable, because higher values for the energy release rate do 
not result in brittle fracture behavior of ice in the simulations. In case of higher energy release rates, 
the force after fracture does not drop immediately. This result is in line with fracture toughness 
experiments in small-scale [21, 22].  
 
Before the required material parameters for the cohesive elements can be determined, the material 
model for the solid elements must be selected. An elastic material model for the solid elements is 
used. The density of the solid elements is reduced by half to 450 kg/m³. The elastic modulus is 
assumed to be 9 ⋅ 109 Pa and corrected with formula 19. The Poisson's ratio is assumed to be 0.35. 
Basic material parameters for ice are given for instance in [23, 24]. For the complete description of the 
model only the peak traction in tension and shear are missing. These parameters are identified by 
simulating the shear and tensile test with different parameter sets. The results for the shear and 
tensile test are presented in Table 2. 

Table 2: Selected small-scale simulations 

Test type  Model Source of data  Ice type Target value Simulation 

Tensile  

 

Currier et al. 
 [25] 

Distilled water 1 MPa =6.5kN 
Grain size ~ 2.3 
mm 

5.93 kN 

Shear  

 

Frederking et 
al. [26] 

Columnar-grained  
fresh-water ice  

5 kN 7 kN 

 
The final parameter set is given in Table 3. A lower limit for shear strength is half the tensile strength. 
This relation is given by the Mohr-Circle. A compromise between tension and shear strength is 
chosen. The crack patterns and forces of the simulations agree reasonably well with the experiments. 
With the obtained parameters, a compression-, tensile splitting and CTOD test were also simulated 
successfully (compared to own measurements and [27]).  

Table 3: Material parameters for the cohesive and solid ice elements 

Description Symbol / variable Value Source 

Cohesive elements, MAT_138 

Density RO Mesh dependent Equation (10) or (11) 

Stiffnesses EN=ET Mesh dependent Equation (20) or (21) 

Energy release rates GIC=GIIC 4 J/m² Fracture toughness [20] 

Normal peak traction T 1.2 MPa Simulation 

Tangential peak traction S 0.6 MPa Simulation 

Ultimate displacements UND, UTD UND=6.67e-6 mm, 

UTD=1.33e-5 mm 

Calculated from GIC and T 

Solid elements, MAT_ELASTIC 

Density RO 0.5*900 kg/m³ 
= 450 kg/m³ 

Equation (12),  
own measurements 

Poisson’s ratio PR 0.35 [28] 

Young’s modulus E 1e10 Pa Equation (19) with f_k=10 

 

4 Drop tests 

The CZM was also applied to more complex ship-ice related problems. Two experiments of a drop test 
series were simulated. Cylindrical ice specimens with a diameter of 200 mm and a conical tip with an 
angle of 30° were used for impacting rigid plates and deformable aluminum panels (5083-H116 alloy). 
The drop mass was 224 kg and impact velocity of 1.5 m/s. A detailed description of the experiments 
can be found in [29]. Both tests, against a rigid and deformable plate, were simulated. 
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The previously determined parameters for the cohesive elements have been adopted. The element 
size was adjusted to 0.015 m to reduce computation time. Preliminary simulation runs showed that if 
kinetic energy could not be absorbed, the majority of CZ elements instantly failed. This resulted in 
explosion-like behavior of the model. As a remedy, the coefficient of friction was increased from 0.01 
to 0.25, which lead to more realistic spalling behavior. This friction coefficient is unphysically high for 
flat surfaces and high loading rates [30]. However, the true friction conditions are not known. Rough 
surfaces or recrystallization of the crack may increase the coefficient. 0 
 
The results of the simulation of the drop test against a quasi-rigid plate are shown in Figures 4 and 6. 
Fracturing of the ice specimen was initiated. The kinetic energy was converted into friction and 
fracture energy during impact. The fracture pattern was comparable to the experiment. However, the 
simulated impact force was five times higher than measured. The deceleration of the specimen was 
too fast compared to the experiment. Lastly, the simulation results did not show a line like pressure 
distribution. This is typically expected from brittle ice structure interaction.  
 
The results of the simulation of the drop test against a deformable plate are shown in Figures 5 and 7. 
As in the experiment, no splintering of the ice sample was observed in the simulation. Only few 
cohesive elements in the contact zone were eroded. The force was mainly limited by the plastic 
deformation of the aluminum panel. The peak force was around 28 kN, which is a bit higher than in the 
experiment. The simulation matches the force curve of the experiment.  
 
 

 

 

Fig.4: Drop test with 1,5 m/s against a 
quasi-rigid panel 

Fig.5: Drop test with 1,5 m/s against a 
deformable aluminum panel 

 

Fig.6: Comparison of measured und 
simulated contact forces for the quasi-
rigid panel  

 

Fig.7: Comparison of measured und 
simulated contact forces for the 
deformable aluminum panel  
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Although the results are satisfactory, some open questions remain, particularly for the simulation with 
a rigid contact plate. It appears that in the rigid case the forces are limited due to the ice fracturing and 
crushing behavior. These processes can only be simulated to a limited extent. A different behavior is 
observed in the deformable plate simulation. In that case the contact forces are dominated by the 
plastic and elastic deformation of the aluminum panel.  
 
The CZ simulations also showed mesh dependence. For example, the simulation results change 
significantly when symmetry planes are introduced into the model. In addition, an interaction between 
the contact algorithm and the CZ elements in compression was found. The single surface contact 
algorithm prevents the solid elements from penetrating each other. However, it does so even if the CZ 
element between two solid elements has not been deleted yet and introduces a restoring force at the 
same time. The resulting contact force via the friction algorithm reduces the shear stress acting in the 
CZ element. This could be the main reason for the strong dependence on the coefficient of friction.  
 
 

5 Discussion and Outlook 

The CZM is a good method for predicting academic problems dominated by a single crack. The 
complexity increases for continuous crushing problems with multiple, interacting cracks; energy 
dissipation and continuum behavior are more important and have to be reflected by the model to 
obtain realistic results.  
 
A low energy release rate is necessary to obtain brittle fracture (and avoid ductile behavior). As a 
result energy dissipation through crack propagation appears to be insignificant. However, the energy 
release rate of ice is subject of ongoing discussion. It is also expected to be size dependent [31]. This 
is in contrast to other ice material properties, which have been studied extensively and can be applied 
with more confidence. Additionally, the interaction between the single surface contact algorithm and 
the penalty-based compression of the CZ elements has not been investigated to the full extent. The 
advantages and disadvantages of the CZM are listed in the following Table 4. 

Table 4: Advantages and disadvantages of the CZM  

Advantages: Disadvantages 

 Volume-preserving 
 Somewhat arbitrary fracture paths 
 phenomenological model 
 Few material parameters required 

 Interaction with contact algorithm 
 Increase of degrees of freedom 
 Small simulation time step necessary 
 Artificial compliance of CZ elements 
 Still small loss of mass during 

element erosion 

 
In the future, some improvements are necessary for a confident application of the CZM to ice-structure 
interaction problems. The cohesive model should consider hydrostatic stress to realistically reflect ice 
fracture. For the bulk material model, softening due to micro fracture and recrystallization should be 
included. Lastly, LS-Opt could be used to optimize material parameters. This is expected to work well 
for specific cases with known boundary conditions.  
 
 

6 Summary 

A cohesive model for brittle ice-structure interaction problems is presented. Basic problems of the 
CZM method are discussed. Recommendations for model generation are developed. The results are 
satisfactory for problems dominated by a single crack. A reliable simulation of complex ice-structure 
interaction problem is currently only possible in individual cases, which are not dominated by 
continuous crushing processes. Despite these limitations, ice-structure interaction scenarios are 
successfully simulated. Open questions remain regarding material behavior (e.g. friction) and the 
contact algorithms. These problems were particularly evident in the case of the rigid plate. Overall, this 
research is seen as a first step and further validation is needed, especially for varying geometric 
scales and different problems, e.g. with confined specimens.  
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