

Simulation of containment-tests at a generic model of a large-scale turbocharger with LS-DYNA

Stefan Hennig¹, Prof. Dr.-Ing. Armin Huß², Heiko Honermeier¹, Marcel Jagic¹, Manuel Schönborn

¹ Ingenieurbüro Huß & Feickert GbR, Liederbach, Germany ² Frankfurt University of Applied Sciences, Frankfurt, Germany

Overview

- Introduction
 - o Company Profile
 - Why simulate Containment-Tests
- Motivation
- Containment Simulation today
- Generic Model
- Studies
 - o different approaches of modeling bursting scenario of compressor flywheel
 - effect of lode-angle-parameter on the damage and failure behavior of the housing structures
- Summary

Introduction - Company Profile

- > 1992 Founded (managing partner: Prof. Dr.-Ing. W. Feickert and Prof. Dr.-Ing. A. Huß)
- Based in Liederbach / Frankfurt a.M.
- Providing CAE services for several branches: automotive industry and its components suppliers, machine and plant construction, aerospace, consumer goods, chemical industry
- Fields of activity:

Simulation explicit and	Software- und	Experimental	Software -Training
implicit FE-Method	Product Development	Services	- Training Courses
- Linear and nonlinear structural	- Software Development	- Durability Testing	and Webinars
mechanics	- AutoFENA 3D	- Acceleration	- ANSYS
- Dynamic	- FKM inside ANSYS	Measurement	- I S-DYNA
- Optimization	- WB/FKM	- Modal Analysis	
- Thermal Transport	- WB / Weld	Tereneratura	- FKW Assessment
- Fluid Dynamic	- ASME-Tool	- Temperature- und	
- Crash	- Bucklina-Tool	Strain Gauge-	
- Drop Test	- Product Development	Measurement	
- Containment Test	- Concept Development		

- Since 2010 office in northern germany (near Hamburg)
- Since 2015 office in Düsseldorf

Introduction – Why simulate Containment-Tests

Why simulation techniques are used?

o Hardware test: extremely high kinetic energy

- very dangerous \rightarrow high safety precautions necessary
 - Example: A rotor with a mass of 20 kg rotates with 26.000 min-1 corresponding approximately 840.000 J of kinetic energy. In a car side crash about 105.000 J of kinetic energy have to be dissipated.
- · very expensive and time consuming
- duration of damage process: approximately 2-15 ms
- comprehension of high-speed deformation processes is restricted
- possibilities for measurements and improvements are limited

o using explicit finite element technique

- reduce/minimize number of hardware tests
- possibility to look into the machine during crash and analyze and comprehend load chains
- nowadays essential tool used from the early stage of the development process of a turbocharger up to its certification and also afterwards accompanying the whole machine-life
 - Develop a safe design with regard to burst loads
 - Analyze and understand damage process, load chains and the causal correlations in the machine in detail
 - Qualify design concerning modified boundary or operating conditions

Motivation

- Simulation concepts and methodologies are developed continuously
 - Problem:
 - turbocharger structures become more and more complex and sophisticated
 - the bursting and damage procedure should predicted as exact as possible
 - increasing demand in the precision of the CAE model (e.g. all cast structures are meshed with 3D elements, preferably hexahedrons)
 - strong increase in effort for modeling
 - strong increase of computing time

- Further investigations (e.g. new approaches for different idealizations of certain areas, new material laws, different boundary conditions or robustness studies) at a model of a specific turbocharger and on that high level of detail is not really economical.
- \rightarrow The idea of a generic CAE model of a large-scale turbocharger was born

Containment-Simulation Today

- What are the tasks today?
 - compressor impeller burst and turbine wheel burst or blade loss scenarios and combinations of both
 - several load cases and structure variants
 - different burst scenarios, rotational velocities, impact positions, impeller/blade sizes, different design sizes (not scaled ideally)
 - o lead to complex and varying load paths and high loadings in different sections
 - o long load chains with multiple sites of fracture

Containment-Simulation Today

- detailed model of the whole turbocharger is necessary which is able to accurately represent all areas
 - o fine mesh with 3D-elements (preferably Hexahedrons) for structure parts and fasteners
 - min. 3 5 elements over wall thickness
 - consider cast radii
 - consider ribs
 - reduce connection via tied contacts
 - o impeller: separate wedges (merged over 50-60% of height beginning from the top of the impeller → closer reproduction of the real weakening)
 - o boundary conditions: pretensions, internal pressure, propulsion of rotor
 - o complex material models:
 - differentiation of behavior under tension and compression load with consideration of strain-rate dependencies (e.g. MAT124)
 - multi-axial fracture including damage (*MAT_ADD_EROSION GISSMO)

≻FE-Data:

- > 5 million nodes
- > 5 million elements
- 4,5 mm average element length
- ca. 0,5 mm min. element length
- very small timestep
- simulation time: 8ms → calculation time: ca. 40-60 h (16 CPU-Cores)

7

Containment-Simulation Today

Example: material law for a cast housing: *MAT124 + *MAT_ADD_EROSION (GISSMO)

- [1] M. Basaran, "Stress State Dependant Damage Modeling with a Focus on the Lode Angle Influence," RWTH Aachen, Aachen, 2011, Dissertation.
- [2] A. Haufe, P. DuBois, F. Neukamm und M. Feucht, "GISSMO Material Modeling with a sophisticated Failure Criteria," Dynamore GmbH, Stuttgart, 2011.
- [3] Livermore Software Technology Corporation (LSTC), "LS-DYNA Keyword User's Manual Volume II Material Models," LSTC, Californien, 2015

© Ingenieurbüro Huß & Feickert, 2016

Generic Turbocharger Model

- > Requirements:
 - usable for compressor and turbine damage
 - \circ as simple as possible
 - reduce simulation time
 - quick and easy modifiable
 - possible parameterization
 - \circ as accurate as possible
 - depict the principle behavior of real containment tests with all its complex load chains

> Objective:

- o no assessment of containment safety
- influence check (A-B-comparisons)
- robustness studies
- test new approaches (modeling, material, BC's)
- benchmark new software releases or other codes

9

Generic Turbocharger Model

> Turbocharger is build up modular: **3 sections and rotor**:

- o Compressor
- \circ Bearing
- \circ Turbine
- Rotor

2 versions of each (coarse and fine - differentiation of compressor and turbine containment)

rotational symmetric structure

 \circ no inlet and outlet openings

no base / foot structure

 \circ mounting via BC's at lower area of circumference of turbine casing

silencer heavy idealized

- back plane/flange + lumped masses
- \circ retention mass inertia

Study 1 - Modeling bursting scenario and pretension of compressor wheel

Modeling of bursting scenario:

- \circ 1 Compressor wheel
- \circ 2 Clamping Nut
- o 3 Clamping elements / rotor parts
- o 4 deformable shaft
- \circ 5 rigid shaft with turbine wheel

3 approaches of modeling bursting scenario:

	T _{frac} [ms]	E _{int} [kJ]	E _{kin} [kJ]	E _{int,erod} [kJ]	E _{kin,erod} [kJ]	∆E _{kin} [%]	
DETACHED	0,00	2,1	2439	0,0	0,0	0,2	_
60% MERGED	0,25	13,9	2397	11,7	3,5	2,0	
SLOTTED	0,47	17,4	2380	12,6	1,5	2,5	+0,2% slot

- ➤ Affect fracture time → different trajectories
- Elimination effect of fracture time lead to divergence of only 3-4° after fracture
- marginal influence on CGvelocities

Study 1 - Modeling bursting scenario and pretension of compressor wheel

\succ Pretension:

© Ingenieurbüro Huß & Feickert, 2016

	T _{frac}	E _{int}	E _{kin}	$E_{\text{int,erod}}$	E _{kin,erod}	ΔE_{kin}
	[ms]	[kJ]	[kJ]	[kJ]	[kJ]	[%]
SLOTTED	0,47	17,4	2380	12,6	1,5	2,5
SLOTTED70	0,35	17,9	2375	16,2	7,0	2,7
SLOTTED70_RadPre	0,40	11,7	2385	12,4	1,6	2,3
SLOTTED AxPre	0,47	17,7	2381	12,9	1,5	2,5
SLOTTED70_AxRadPre	0,40	12,3	2384	13,0	2,9	2,3

- no effects on velocities of
- > small effect on fracture time \rightarrow different trajectories
- elimination effect of fracture time lead to divergence of

- review results in complete turbocharger model (generic model):
 - o Implemented rotor variants:
 - Var 1: DETACHED: 3 separate segments of compressor wheel without pretension
 - Var 2: 60% MERGED: partially coupled segments without pretension
 - Var 3: 60%MERGED_AxRadPre: partially coupled segments; axial + radial pre-stressed
 - Var 4: SLOTTED70_AxRadPre: Slotted compressor wheel (a=70mm); axial + radial pre-stressed
 - evaluation of simulation on the basis of energies, displacements and kinematic of compressor insert piece, compressor casing, bearing casing and labyrinth disk

Study 1 - Modeling bursting scenario and pretension of compressor wheel

➤ Kinematic:

Study 1 - Modeling bursting scenario and pretension of compressor wheel

> Insert Piece:

- implementation of bursting scenario:
 - small influences on energy balance (red. 2-3%)
 - \circ difference in time till fracture (depending on slot depth) \rightarrow variance of segment kinematic
 - small divergence in radial and tangential movement and segment rotation : trajectories differ < 4°
 - obvious influence on axial movement / overturning (in particular Var1)
- \succ axial pretension \rightarrow no significant influences
- radial pretension → reduced E_{internal} for fracture + reduced loss of E_{kinetic}
 o no influence on degree of damage of compressor wheel
 o small influence on time till fracture → small variance of segment kinematic (overturning)
- pretension eliminates peak in triaxiality at the beginning

Study 1 - Modeling bursting scenario and pretension of compressor wheel

- influences in complete turbocharger model (generic model):
 - small differences in global energies + partially heavy differences in energies of main assemblies
 - o different impact loads on surrounding parts: differences in plastic strain, axial displacements and damage
 - $\circ \rightarrow$ different kinematic of compressor wheel
 - in particular Var1 (DETACHED) differ from the rest significantly
 - marginal divergences between Var2 and Var3 (60%MERGED with and without Pretension)
 - small divergences between Var3 (60%MERGED+PRET) and Var4 (SLOTTED70+PRET)
 - initial splitted or only slotted impeller make the great difference; the kind of modeling the slot is secondary
 - \circ axial pretension \rightarrow no influence; radial pretension \rightarrow small influence

compressor bursting: prefer variant with partially merged segments (coupling over ca. 60% of height beginning from the top of the impeller) without pretension
 (good kinematic + heaviest loads on surrounding structure + no slot-modeling and implicit analysis needed)

Study 2 – Effect of lode-angle-parameter on the failure behavior in a CT-Simulation

Example: material law for a cast housing: *MAT124 + *MAT_ADD_EROSION (GISSMO)

Study 2 – Effect of lode-angle-parameter on the failure behavior in a CT-Simulation

- Different behavior in the kinematics if the 3D stress state is considered.
- More damage due to the radial impact in the model with lode angle dependence.
- Due to less damage in the first model the axial forces get bigger and the screws start to fail.

Study 2 – Effect of lode-angle-parameter on the failure behavior in a CT-Simulation

- Results Comparison with/without lode angle dependence:
 - \circ Results of the labyrinth disk
 - triaxiality: -0,5 to -0,2
 - lode angle parameter: -0,55 to -0,2
 - → failure strain differ strongly from that of the approach with only plane stress dependence.
 - Shows possible differences if a 3D stress state is considered in the failure model. More damage in the model with lode angle dependence.

Lode angle dependence:

- $\circ\,$ significant influence on the behavior of failure
- $\circ\,$ strong dependency of shape of the failure surface
- more possibilities to adjust the failure behavior to test data
- more material tests necessary, which cover different stress states

Summary

- ➤ models become more and more complex → high effort for meshing + long calculation time → cost driver
 - studies of modifications and improvements (e.g. in material laws, meshing, geometry, boundary conditions, simulation methodology) are very expensive and long-lasting
- the developed generic model has proved itself a very helpful instrument
 - \circ depicts the principle behavior of real containment tests with all its complex load chains
 - \circ enables studies, sensitivity and robustness analyses in a fast and efficient way
 - improvements, new features and simulation approaches can be tested and assessed comprehensively before considering them in a detailed containment simulation
- kind of implementation of bursting scenario can affect simulation results significantly
 - o Currently used approach is very good and efficient
- Lode angle dependence is a very important point

can have strong influence depending on shape of the failure surface and the existing stress state
 more effort for validation needed

Ingenieurbüro Huß & Feickert GbR Im Kohlruß 1-3 65835 Liederbach Telefon: +49 (0)6196 / 67071 – 0 Fax: +49 (0)6196 / 67071 – 28 Mail: mail@ihf-ffm.de www.ihf-ffm.de Managing Partner: Prof. Dr.-Ing. Wolfgang Feickert, Prof. Dr.-Ing. Armin Huß