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1 Introduction 

Simulation-based design optimization and probabilistic analysis involve repeated calls to potentially 
expensive (e.g. crashworthiness analysis) design alternative  or function evaluations. To avoid the 
high cost (or computational time) associated with repeated expensive evaluations, the actual function 
evaluations are substituted with evaluations based on metamodels. Metamodels, trained based on 
relatively few actual function evaluations, provide an approximation of the system responses and thus 
act as surrogate models. 
Considerable research has been done in the field of metamodel-based design optimization and 
analysis [1]. Various types of metamodels can be trained based on different criteria for the "best" fit, 
several of which are also available in LS-OPT [2]. Different sampling schemes have also been 
developed to globally or locally enhance metamodel accuracy, based on specific applications such as 
deterministic single-objective design optimization, multi-objective optimization, reliability analysis or 
reliability-based design optimization [3-6]. For most types of problems, metamodel-based methods 
have been shown to perform efficiently and accurately. However, the use of metamodels is hampered 
for certain systems that have discontinuous or binary responses, e.g. buckling, on-off contact, hidden 
constraints etc [7, 8]. The approximation of  response values becomes difficult for such systems. 
This paper presents an alternative method, based on the classification of response values, which does 
not require response approximation [7, 9]. As a result, it is unaffected by the presence of binary or 
discontinuous responses and provides a straightforward way to solve such problems. The principal 
idea is to classify the training samples into two classes, using a threshold value or a clustering 
method, and then construct an "optimal" decision boundary in the design space that separates the 
samples belonging to the different classes. Thus, this decision boundary can be used as the limit-state 
in reliability analysis [7] or to constrain feasible design alternatives in optimization [10].  
The use of classification methods is quite common  in pattern recognition and decision making [11-13], 
but their use in engineering design is relatively new and has only gained attention over the last 
decade. A machine learning technique known as support vector machine (SVM) [14] has received 
special attention due to its ability to minimize generalization error and to define highly nonlinear 
boundaries needed to solve design problems in the general case. It was first used for reliability 
assessment in [15] and for deterministic or reliability-based optimization in [7]. Adaptive sampling 
techniques have also been developed based on the specific application (reliability analysis or 
optimization) [10, 15-18]. More recently, another classification method known as random forest 
classification has also gained attention [8]. However, no comprehensive study has been performed to 
assess the relative efficiency and accuracy of different classification methods. As in the case of 
metamodels, it is likely that the relative performance of different classifiers is also problem specific. 
Irrespective of the type of classifier, the basic principles of their application to engineering design 
remain the same.  
The aim of this paper is to give an overview of different applications and advantages of classification in 
engineering design. A brief overview of the newly implemented MATLAB interface in LS-OPT is also 
presented. This interface can be used to integrate LS-OPT with open source MATLAB classification 
codes, but LS-OPT will have the classification algorithms implemented within itself in the near future. A 
brief overview of the proposed new "Classifier" entity in LS-OPT is also presented.  Additionally, a 
major part of the paper is dedicated to a very recent method for classification-based multiobjective 
optimization (MOO) [19] developed by the principal author. This method has been compared to 
existing MOO methods, such as NSGAII [20] and Pareto Domain Reduction (PDR) [21], using several 
examples up to thirty variables. The SVM classification-based method  involves a radical shift from 
current MOO methods, and is shown to perform significantly better.  
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2 Basic principle of clasification-based design 

In both design optimization and reliability assessment one of the main tasks is the demarcation 
between acceptable (feasible/safe) and unacceptable (infeasible/failed) designs. In optimization, the 
optimum design is located in the feasible space. Similarly, in reliability assessment, the failed samples 
contribute to the failure probabiliy. If the boundary separating acceptable and unacceptable regions of 
the design space is available analytically in terms of the design variables, reliability assessment and 
optimization become relatively straightforward. However, in general such a boundary is not available. 
Instead, only the responses corresponding to specific designs are available. In metamodel-based 
approaches the response values at these specific points in the design space are used to construct 
analytical response approximations at any general design. These approximations are then used to 
demarcate the acceptable and unacceptable space based on threshold values. However, a different 
approach is used in classification based design. Classification methods only require pass/fail 
information at a few specified samples that are used for training. This information is readily available 
using simulations at these samples even if the responses are binary or discontunuous. The decision 
boundary is constructed as the classifier that optimally separates the acceptable and unacceptable 
training samples. The difference between metamodel-based and classification-based methods to 
determine acceptability of any general design alternative is shown in Figure 1. The classification-
based method takes a decision directly based on the position of the new sample in the design space 
whereas in the metamodel-based method, the decision is taken based on the corresponding predicted 
response value and threshold. As the decision-making using a trained classifier is straightforward and 
cheap, the decision boundary can be used as an optimization constraint or for reliability assessment. 
 

 
 

Figure 1 Summary of basic classification method (bottom) and comparison to metamodeling (top). 

A prominent method to cnstruct the decision boundaries is SVM. An SVM boundary is obtained as 
s(x)=0, where s(x) is given in Eq. (1). 
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Here, yi = 1 (e.g. red vs green) is the class label, αi is the Lagrange multiplier for i
th
 sample and b is 

the bias.  A kernel K maps the design space and the feature space (a high-dimensional space 
consisting of basis functions as the variables, where the classifier is linear). In this work, a Gaussian 
kernel is used to construct SVM boundaries (s(x) = 0). Spread of the kernel is assigned the largest 
value without any training misclassification. An SVM constructs the optimal boundary that maximizes 
the margin between two sample classes (+1) in a feature space. The boundary is linear in the feature 
space, but can be highly non-linear in the design space. 
 
The main advantages of using the classification-based method are as follows: 

1. As evident in Figure 1, the classification-based method does not require the actual response 
values at the training samples; instead it only requires the class 1  of the samples. As a 
result, it can be applied to problems with only binary pass/fail information available (Figure 8). 

2. As the response values are not approximate and are instead classified, the method is 
unaffected by the presence of discontinuities [7, 22]. 

3. Different failure modes can be represented by a single classifier. This feature can be used to 
devise a mechanism in which only a few failure modes need to be evaluated at a sample to 
obtain the class label, thus increasing the efficiency [10]. 
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3 Classification-based design using a MATLAB stage in LS-OPT 

The aim of this section is two-fold: to introduce the new MATLAB solver interface in LS-OPT, and to 
show how it can be used currently to perform classification-based design within the LS-OPT 
framework. In the future, classification method(s) will be implemented in LS-OPT to eliminate the need 
for the MATLAB stage for this particular purpose. First, a simple single stage optimization setup with a 
MATLAB stage type is presented. Then the process flow for classification-based design is presented. 
 
The global problem setup and the MATLAB stage setup for a simple single iteration optimization are 
shown in Figure 2. An output file is required for the MATLAB stage that provides a template for the 
stage histories and responses. The formatting for this file is the same as for METAPost. Specification 
of the template output file automatically populates the response and history panels of the GUI. The 
input file for the MATLAB stage ends with ".m" and consists of the variable definitions and the code for 
response/history calculation. The variables are defined using the "input" function in MATLAB. To 

define a variable "x1", the MATLAB stage input  file contains a command that resembles "x1 = 

input('arbitrary text');". The MATLAB input contains an appropriate try-catch statement to 

indicate the termination status (N o r m a l or E r r o r). Also, it needs to dump the responses 

and histories in the METAPost format (details in the LS-OPT manual [2]). 
 

 

 

 
Figure 2 Single iteration optimization flow with MATLAB stage (left) and stage setup dialog (right). 

 
Figure 3 shows the multilevel setup for classification-based design using a MATLAB stage. The outer 
level has an LS-OPT stage followed by a MATLAB stage, and a dummy sample and composite. The 
inner level DOE task has a user-defined sampling file (overwritten by the MATLAB stage in every 
iteration) and an LS-DYNA stage. The inputs to the LS-DYNA stage are the user-defined variable 
values and the outputs are responses and/or histories extracted from the LS-DYNA databases. These 
responses and their approximations are transferred to the MATLAB stage as inputs to train the  
classifier (using available SVM codes, e.g. [23]) and perform the optimization. The output of the 
MATLAB stage is either the final optimum solution or a set of new samples to overwrite the LS-DYNA 
sample input. In this setup, LS-OPT is used for LS-DYNA response extraction and metamodel 
construction. The optimization or reliability assessment is performed within the MATLAB stage using 
the classifier and the metamodel expressions exported by LS-OPT. In the future, these will be 
integrated in LS-OPT through the implementation of a new classifier entity that will share some of the 
characteristics of composites and metamodels. It is noteworthy that the multilevel setup consisting of a 
MATLAB stage for classification and optimization has been presented with the intent to demonstrate a 
possible use of the stage for sampling guidance. A simpler approach to this particular problem may be 
to call LS-OPT from MATLAB to extract the LS-DYNA responses (instead of the other way around).  
 

 

 

 
Figure 3 Sample selection and optimization (e.g. classification-based) using MATLAB stage. Outer level for 
iterative call to MATLAB (left) and inner level for response extraction at the samples written by MATLAB (right). 



10
th

 European LS-DYNA Conference 2015, Würzburg, Germany 

 

 

 
© 2015 Copyright by DYNAmore GmbH 

4 Application of Classification to MOO (Adaptive Explicit Multi-objective Optimization) 

This section presents a newly developed method for MOO based on the definition of an explicit 
decision boundary in the design space that delineates the Pareto-optimal regions. The method is 
referred to as Adaptive Explicit Multiobjective Optimization (AEMOO).  Two variants of the AEMOO 
method are presented. In Section 4.1 the basic idea of classification-based MOO is presented. In 
Section 4.2 a classifier-assisted direct optimization method is presented. A second method that utilizes 
classification as well as metamodel approximation is presented in Section 4.3. 
 

4.1 Classification approach to MOO (Dynamic Classifiers) 

In general, MOO problems consist of several objectives that are maximized/minimized simultaneously 
and are conflicting in nature. As a result, the solution of a MOO problem is typically a set of Pareto-
optimal points instead of a single solution. A part of the design space is Pareto-optimal whereas other 
regions are dominated. Thus, MOO can be seen as a binary classification problem in which the two 
classes are dominated (-1 class) and non-dominated or ND (+1 class) (Figure 4). Once a classifier 
(SVM in this work) separating the dominated and non-dominated samples is trained, Pareto-optimality 
of any design is determined using a single classifier evaluation, in contrast with all existing methods.  
 

     

Figure 4: Boundary defining non-dominated regions in design space (left). Design-Objective space Mapping 
(right). 

In order to train an SVM, each training sample's class needs to be assigned prior to the construction of 
the decision boundary. An issue in using classification for MOO is that although it is known that 
dominated samples (class -1) cannot be Pareto-optimal, the opposite is not true; being non-dominated 
among current samples isn't sufficient to be Pareto-optimal. However, the +1 samples represent 
Pareto-optimal designs if the data is sufficient. A decision boundary obtained by assigning +1 class to 
the current non-dominated samples represents an estimate of the Pareto-optimal front, and is refined 
adaptively. As points are added, samples may switch from +1 to -1 as non-dominated samples may be 
dominated by newer samples until convergence. As class definition of existing samples can change 
during the course of AEMOO, the classifier is referred to as dynamic. The classification based 
AEMOO method has several advantages. 

1. Explicit definition of the non-dominated region facilitates implementation of an efficient 

sampling scheme. 

2. It facilitates efficient real time Pareto optimality decisions. 

3. It uses information in both design and objective spaces to enhance its efficiency and 

robustness. 

4. The classification approach allows the handling of binary and discontinuous constraint 

functions. 

5. As the non-dominated region is explicitly defined in the design space, AEMOO is not affected 

much by the number of objectives. 

4.2 Direct AEMOO Method 

Direct AEMOO is based on SVM classification only and does not approximate the function values. It 
favours the explicitly defined SVM-based non-dominated regions for sample selection to avoid waste 
of samples and increase the efficiency. The sign of SVM value s(x) determines whether a sample is 
non-dominated or not, and is straightforward to determine.  
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A fraction of the total n samples are selected within the s(x) > 0 non-dominated regions of the design 
space at each iteration (nsvm samples). Sampling important regions of the design space allows a faster 
increase in the SVM accuracy, as sampling based only on the objective space can lead to clustering of 
samples in the design space, where the SVM is constructed. Several criteria are considered to identify 
important regions with the potential to improve the SVM and the Pareto front (Figure 5): 

1. Sparseness in the design space based on Euclidean distances 
2. Sparseness in the objective space based on Euclidean distances 
3. Probability of being non-dominated based on the SVM 
4. Ranking based on non-domination criterion  

Maximizing the value of SVM, one of the sampling criteria, is equivalent to maximizing the probability 
of locating a non-dominated sample [10, 14]. Additionally, one generation of NSGAII is also used to 
select samples, first within the s(x) > 0 regions and then using an unconstrained formulation. Using 
NSGAII-based samples, the algorithm ensures that the effects of sparseness in the objective function 
space and genetic operator-based evolution are also accounted for.  In order to ensure a global 
search, a small fraction of samples is added based on maximum minimum distance in the entire 
unconstrained design space. Such samples are not expected to provide an efficient sampling scheme, 
and are therefore optional, but guarantee the location of the complete Pareto front when allowed to 
run sufficiently long. 
 

  
 

Figure 5: Summary of direct AEMOO method (left) and sampling scheme (right) 

 

4.3 Metamodel-assisted AEMOO Method  

In this approach, metamodel-based approximation and SVM are used together. The basic idea is the 
same as direct AEMOO - to consider non-dominated ranking along with sample sparseness in both 
the design (x) and objective (f) spaces. However, the single generation of direct NSGA-II samples is 
replaced with converged predicted Pareto-optimal samples obtained using metamodel-based NSGAII. 
Metamodel approximation and the SVM-based classification serve as complementary approaches that 
help in enhancing accuracy by accounting for the distribution of samples in both spaces. The 
methodology is shown in Figure 6. 
 

  
      

Figure 6: Summary of metamodel-assisted AEMOO method (left) and sampling scheme (right) 
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5 Examples 

Several examples are presented to display the main capabilities of classification-based method. First, 
a binary problem is presented in Section 5.1. The aim of this example is to demonstrate the basics of 
classification and its advantages for binary and discontinuous responses. Several MOO examples are 
then presented to validate the efficacy and efficiency of AEMOO. A 10 variable analytical example 
using direct AEMOO is presented, followed by three 30 variable examples using metamodel-assisted 
AEMOO. The efficiency is compared to existing methods PDR and NSGAII. Finally, AEMOO is used 
for tolerance-based MOO of a truck [24]. The sample type fractions are η1= η2=0.2 and η3=0.1 (Figure 
5 and 6). Unless mentioned, floor(1.5*(m+1))+1 samples are used per iteration, m being the number of 
variables. Cross-validated radial basis function metamodels, as implemented in LS-OPT, have been 
used for function approximations, but other metamodels can also be used. For examples 2-4, one of 
the objectives is f1 = x1. The second objective f2 is provided with the individual examples. 
 

5.1 Example 1. Plate failure due to impact (binary response)  

This example consists of a ball impacting a plate modelled with solid elements and the MAT24 
material card in LS-DYNA (Figure 7). The plate elements erode upon reaching a specified limiting 
plastic strain of 0.5. Upon reaching the limit state, an element fails and undergoes an instantaneous 
drop in strain to zero value. The exact limit state may or may not be captured for a particular 
simulation in the LS-DYNA output databases, depending on the output intervals. As a result, only 

pass/fail information is available in the messag file. This example is studied with only two variables, 

plate thickness and the yield stress, for simplification of the visual interpretation. An experimental 
design consisting of 50 space filing samples is generated. The corresponding binary states 
represented by +1 (no erosion) and -1 (element erosion) are shown in Figure 7. In Figure 8, the 
metamodel-based approach is compared to the classification-based approach. Metamodels have 
problems while approximating such binary or discontinuous responses and are sensitive to the 
selection of arbitrary numeric labels. However, this is a very simple problem from a classification 
perspective. The SVM boundary can be used for optimization or for reliability assessment. 

 

 
 
 
 

 
 

Figure 7: Element erosion upon impact on plate (left). Binary response (right). -1 shows erosion. 
 

        
Figure 8: Fitting metamodel to binary response (left). SVM classification of the designs (right) 
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5.2 Example 2. Example with ten variables and two objectives - ZDT3 (Direct AEMOO) 

This example has 10 variables (m = 10) and 2 objectives. The second objective f2 is:  
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The Pareto fronts at successive iterations are plotted in Figure 9. The front at iteration 125 (2250 
points) is quite close to the actual one, and shows that AEMOO can locate disjoint Pareto-optimal 
fronts using only classification. NSGAII completely missed one region among five on the front. This 
can be attributed to sampling based on the f-space only without considering design space sparseness, 
unlike in AEMOO. 

 

  
 

Figure 9: Results for Example 1. Direct NSGAII (left) and direct AEMOO (right). 

 

5.3 Example 3. ZDT1 with 30 variables and 2 objectives (metamodel-assisted AEMOO) 

This problem consists of two objectives f1 and f2. The second objective is: 
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Optimization results are shown in Figure 10 using trade off plots at different iterations at intervals of 
10. The results shown are the evaluated Pareto optimal points. The proposed AEMOO method is able 
to locate the entire spread of Pareto front at the 10

th
 iteration itself (470 samples), after which it adds 

diversity. The samples on the front are very well diversified by the 20
th
 iteration. In comparison, 

performance of direct NSGAII is much slower and it takes 40-50 generations (1920-2400 samples) to 
obtain a diversified front. Even at 50

th
 generation, the Pareto front using NSGAII is not as accurate as 

the 10
th
 iteration of AEMOO. PDR performs more efficiently than direct NSGAII, but still takes 20-30 

iterations (940-1410 samples) to obtain a well diversified accurate front.  
      

   
 

Figure 10: Example 2. Direct NSGAII (left), PDR (center) and metamodel-assisted AEMOO (right). 

 

5.4 Example 4. ZDT2 with 30 variables and 2 objectives (Metamodel-assisted AEMOO) 

This problem consists of 30 variables (m = 30) and two objective functions. The second objective is: 
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Optimization results are shown using computed trade off plots in Figure 11. AEMOO is able to find a 
very well diversified and accurate front before the 10

th
 iteration itself (470 samples). On the contrary, 

with a comparable population size of 48, direct NSGAII failed to obtain the Pareto front even after 50 
generations. The population size for NSGAII had to be increased to find the actual front. PDR was 
able to locate the Pareto front with a sample size of 47 per iteration, but was slower than AEMOO, as 
it took 30 iterations (1410 samples) to obtain a front of comparable (but slightly worse) accuracy.  

 

   

 

Figure 11: Example 3. Direct NSGAII (left), PDR (center) and metamodel-assisted AEMOO (right). 

 

5.5 Example 5. Analytical example ZDT3 with 30 variables (Metamodel-assisted AEMOO) 

This optimization problem is similar to Example 2, but has 30 variables instead of 10. The fronts using 
the three methods are shown in Figure 12, along with the actual one. AEMOO located all five disjoint 
regions within first 10 iterations, following which it enhanced the diversity. Both NSGAII and PDR were 
significantly slower and lacked accuracy. Using population size of 48, direct NSGAII completely 
missed 2 out of 5 regions. PDR was able to sample 4 of the regions satisfactorily at 40-50 iterations 
(1880-2350 samples). It found one non-dominated sample close to the fifth region, but not on it. 

 

   
 

Figure 12: Example 4. Direct NSGAII (left), PDR (center) and metamodel-assisted AEMOO (right). 

 

5.6 7 variable tolerance optimization of Chevrolet C2500 truck  (Metamodel-assisted AEMOO) 

AEMOO is used for tolerance-based MOO of a truck. Global metamodels are built using LS-OPT 
based on the truck's responses at 1500 samples (LS-DYNA). MOO is run on the metamodels. Relative 
tolerance and 6 thicknesses x are the variables. Mass is minimized and tolerance is maximized:  
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In Figure 13, the vehicle parts to be optimized are shown along with the optimization results. The 
Pareto front obtained using AEMOO and NSGAII are shown. 100 samples per iteration are used to 
solve this example to ensure at least one sample of each class in the initial sampling. Other 
approaches to avoid this restriction are possible, but are outside the scope of this paper. AEMOO 
results are provided for 30 iterations that were completed at the time of writing this paper and 
compared to NSGAII is run up to 50 generations. The Pareto-optimal front using AEMOO has a better 
spread, and diversity compared to the NSGAII front even at the 50

th
 generation, which shows its 

superior performance.  At the same stage (30
th
 iteration), the Pareto-optimal front using AEMOO is 

clearly better. The Pareto-optimal front consists of a knee at approximately 6% tolerance suggesting it 
to be a good design, as there is rapid mass increase beyond it. 

 

   
 

Figure 13: Truck to be optimized (top), NSGAII (bottom left), metamodel-assisted AEMOO (bottom center), and 
overlaid NSGAII and AEMOO fronts (bottom right). 

 

6 Closure 

An alternate or complementary approach to metamodel-based methods, which are used 
predominantly in the design community, is presented in this paper. This approach, based on 
classification methods, has been shown to possess several qualities that make it useful in certain 
types of problems. The advantage of this method in problems with discontinuous and binary 
responses was shown with the help of a binary problem. Additionally, particular emphasis has been 
given to a new classification-based MOO method, which has been shown to perform very efficiently. 
The proposed AEMOO method has several advantages compared to existing MOO methods due to its 
radically different approach. Two variations of the method are presented: direct and metamodel-
assisted. The method's efficacy is validated using standard examples of up to 30 variables. It has 
been shown to clearly outperform existing methods like NSGAII and PDR in terms of the efficiency. 
Additionally, ability to locate disjoint Pareto fronts has been shown. Ability to solve constrained MOO 
has also been shown using a tolerance-based crashworthiness optimization example. As AEMOO 
explicitly defines the non-dominated region boundaries in the design space, it also naturally facilitates 
real-time Pareto optimality decisions. As the sampling scheme is partly based on design space 
classification, which discards significant regions of the space as dominated, it is expected to be 
affected by objective space dimensionality to a lesser extent. Future work is needed to validate this 
hypothesis. Additionally there is scope for further improvement in the constraint handling in AEMOO. 
The classification-based methods are currently being implemented in LS-OPT to provide a relatively 
seamless interface instead of using a third-party software. As a first step, the method is being 
implemented to perform reliability assessment by defining a new entity type "classifier" and by 
implementing an SVM classification algorithm. This will be followed by its enhancement to represent 
constraints in optimization as well as the implementation of AEMOO. 
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