

Reduction in simulation time and storage requirements using LoCo for SDM

<u>Marko Thiele</u>², Thomas Hambrecht³, Harald Schluder³ Stefan Mertler¹, Clemens-August Thole¹, Heiner Müllerschön², Martin Liebscher²

¹SIDACT GmbH ²SCALE GmbH ³AUDI AG

Audi Vorsprung durch Technik

Introduction

Reduction of simulation time by optimization of domain decomposition

Reduction of

- Input data by data deduplication
- Result data using FEMZIP-E

SCALE GmbH...

- is a 100% subsidiary of DYNAmore with about 20 engineers and computer scientists
- is dedicated to provide scalable IT-solutions for CAE data and process management
- cooperates with SIDACT as a specialist for data compression
- offers the following products which have been developed in the past 10 years in close cooperation with AUDI

Motivation

Audi Vorsprung durch Technik

- Increasing average model sizes
 - average model size is still increasing
 - input data today partly exceed 1GB

- Increasing number of simulations
- more load cases
- more vehicle models
- more simulation disciplines
- more ...

SCAL

- Increasing throughput of simulations per user
 - Individual users are doing more simulations

Approach

Typical workflow properties in SDM-System

- many small design changes
- continuous evaluation of the same load cases
- data and metadata of all simulations are stored in a central place

Goals

- harvesting information of completed simulations in order to optimize performance of future simulations
- store only changes in model input and result data

Introduction

Reduction of simulation time by optimization of domain decomposition

Reduction of

- Input data by data deduplication
- Result data using FEMZIP-E

Problem

- simulation wall clock time is not scaling linear
- using more CPUs to compensate for increasing models is limited
- domain decomposition is based on estimates
- the calculation on all domains has to halt in order to wait for just one domain lacking behind

Goals

- monitoring of performance of all domains
- adjusting the domain size of new simulations according to the gathered profiling information

Audi

Vorsprung durch Technik

Investigations

- performance gain depends on load case and number of CPUs
- Investigations have been performed using the same model without applying changes
- Performance gain depending on load case
 - 5 typical load cases have been investigated
 - 48CPUs have been used for each simulation
 - 10 simulations have been performed per iteration
 - 5 iterations have been performed for each load case
 - no changes to models between iterations
- Performance gain depending on number of used CPUs
 - 1 load case (front wall)
 - 16, 32, 64 and 128 numbers of CPUs
 - 5 iterations per setup

SCALE

- no changes to model between iterations
- 10 runs for final iteration on each setup

Optimization of Domain Decomposition

Implementation in productive environment

- LoCo has been used as SDM-System to gather the profiling information of ongoing simulations and provide this information to new simulations in order to optimize domain decomposition
- each simulation in LoCo may use the profiling information of one of its predecessors
- overcompensation is avoided by monitoring the performance over multiple runs
- all simulations started with LoCo use this approach by default, no user interaction is required
- the difference between artificial tests and the productive environment is that in the productive environment there are always ongoing changes between calculations
- Results in productive environment

SCALE

- 74 samples of original simulations of Q2/2014 have been recalculated without optimization
- all simulations have been performed on 32CPUs
- the overall performance gain has been <u>8%</u>

Introduction

Reduction of simulation time by optimization of domain decomposition

Reduction of

- Input data by data deduplication
- Result data using FEMZIP-E

Reducing Input Data

Motivation

- input data keeps increasing
- models are best handled at the local workstation
 - input data has to be transferred and stored
- usually only small changes are applied for each simulations

Goal

- storing and transmitting only the changes that users apply
- reducing the required data volume as much as possible
- considering storage as well as bandwidth and transfer volume
- Solution
 - data deduplication
 - using the best available compression algorithms

Layers of Compression of Input Data

- File level Data Deduplication
 - each Simulation consists of multiple Files
 - changes for a simulation usually only affect a few files
 - only changed files are stored and transferred
 - savings approximately factor 20-25
 - standard in LoCo
- Block level Data Deduplication
 - changes on simulation input usually affect only a few lines
 - file is separated into blocks
 - only changed blocks are stored and transferred
 - savings approximately factor 8-10
 - in development for LoCo (VAVID)¹
- Standard compression algorithms
 - simulation input files are usually ASCII
 - standard compression algorithms (e.g. zip, bzip, lzma) work best on ASCII data
 - savings approximately factor 3-4
 - standard in LoCo

200TB raw input data

8TB unique files

1TB unique blocks

0.25 TB stored data

LoCo_speichert_nur_das_was_nötig_ist.

include consists of blocks:

5 + 37 = 42 characters

BCDE

Α

Estimates based on Test Data

	[GB]	[%]
original LoCo vault data for one project	40,5	100%
raw data (vault decompressed)	157,2	388%
data deduplication (without compression)	17,1	42%
compression gzip	5,1	12%
compression lzma	3,2	8%

Problems yet to be solved

- block index can become very large (high demand on RAM)
- deduplication has to be done client side (reducing transfer volume)
- very high performance requirements for request rates to block index (esp. server side)
- performance for file reconstruction is curtail
- permanently deleting individual data sets is challenging

Introduction

Reduction of simulation time by optimization of domain decomposition

Reduction of

- Input data by data deduplication
- Result data using FEMZIP-E

Motivation

- Simulation results often contain data of various different variables.
 - The more variables are used in the output the bigger becomes the final result file.
- Due to generally small changes in models the results often contain comparable data
 - Reduce data by storing just the differences between new and known results

Problems

- With the increasing number of load cases it becomes difficult to decide witch variables to consider for the output files
- Taking advantage of similarities between runs is a challenging mathematical task
 - Result data contains chaotic components
 - Unchanged parts of the models might behave similar but not identical

Solution

- Reducing the used variables in the output files to the really required ones for the specific load case and task will reduce the overall required storage.
- Applying FEMZIP-E by SIDACT in order to take advantage of similarities between runs.

reduce output

- specify necessary output in header
 - output only relevant data from solver
 - specify relevant output for each use case
 - use features such as selective output
- delete unnecessary output from results
 - use tools from solver to delete unwanted data
 - use e.g. Animator 4 to cut relevant parts of the model

compress output

- use FEMZIP
- tune regular FEMZIP parameter
 - use reasonable accuracy
 - delete unnecessary functions from result files

FEMZIP-E

 Use previous results and store only newly added data

~ 2x (?)

measures with LoCo

- specify output individually by
 - discipline
 - load case
 - . .

use scripts in LoCo to reduce data

 Animator session files for each load case to cut relevant parts of the model

measures with LoCo

- specify FEMZIP parameter file individually by
 - discipline
 - load case

...

measures with LoCo

- find correct predecessor to store new results
- retrieve necessary files to restore individual results
- delete old data by means of access time and access count

SIDACTGmbH

SCALE

storing result data with FEMZIP-E

each simulation produces two Files

SCALE

- **FDB or UFDB:** Database of properties that can be used throughout multiple simulations
- **EFZ:** Additional Information to restore individual result
- result data of each Simulation depends on FDB and UFDB files of predecessors

- deleting individual Data from FEMZIP-E
 - ~85% of the data: EFZ files can be deleted individually
 - ~15% of the data: FDB files and UFDB files have to be kept until all results of a chain are deleted

SCALE

Result Data (FEMZIP-E general principles and workflow)

SCALE

Result Data (compression results)

Audi Vorsprung durch Technik

2012 KW 31

Test Data

- one load case (front wall)
- 155 Results
- compressed with respect to history/order of creation
- Results are extracted from productive environment and have been created over a period of approximately 6 month

Results

FEMZIP-P		13,95 GB	
FEMZIP-E	FDB	0,85 GB	15%
	EFZ	5,00 GB	85%
	Total	5,85 GB	
FEMZIP-E + §	gzip	4,74 GB	

<u>Factor P/E 2,94</u>*

 higher compression rates of up to factor 4 could be achieved when compressing all files at once

- deleting individual Data from FEMZIP-E
 - ~85% of the data: EFZ files can be deleted individually
 - ~15% of the data: FDB files and UFDB files have to be kept until all results of a chain are deleted
 - parts of chains can be deleted individually
 - length of chain is limited (e.g. < 20 results)

advanced scheme for deletion

Constraints

SCALE

- MAX_KEEP always delete, e.g. > 6 month
- MIN_KEEP
- MAX_STORAGE
- Values to be considered
 - ACCESS_TIME
 - ACCESS_COUNT
- delete until smaller than, e.g. 500GB

never delete, e.g. < 1 week

- dered
- last time result has been accessed
- number of times result has been accessed

Summary

Audi Vorsprung durch Technik

Calculation Time

- can be reduced by optimizing domain decomposition
- already implemented and proven to work in productive environment

Reducing Input Data

- Multiple levels of eliminating redundancy
 - file level data deduplication
 - block level data deduplication (in development)
 - standard compression algorithms

Reducing Output Data

- intelligent mechanisms to determine what really needs to be stored
- FEMZIP-E by SIDACT (in development)

Vielen Dank!

SCALE__

